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Lecture Structure

1 Recap from last lecture
2 Projection Matrix
3 Estimation of σ2

4 Gauss-Markov Theorem: OLS is BLUE
5 GM3 contemporaneously uncorrelated
6 GM5 Normality assumption
7 t-tests
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Recap from Last Lecture I

GM Assumptions:
1 The true model is linear in parameters: y = Xβ + ε
2 No Perfect Collinearity: the matrix X has rank k
3 Zero Conditional Mean: E (ε|X) = 0
4 Var(ε|X) = σ2I
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Recap from Last Lecture II

Under GM1-GM3 the OLS estimator is unbiased

E (β̂ | X) = β + E [(X ′X)−1X ′ε|X ]

= β + (X ′X)−1X ′E [ε|X ]

= β

Additionally imposing GM4 we can show that

Var(β̂|X) = σ2(X ′X)−1
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The Projection Matrix

In the following, we will introduce the projection matrix
This matrix is useful for many derivations

ε̂ = y − X β̂ = y − X(X ′X)−1X ′y

= [IN − X(X ′X)−1X ′]︸ ︷︷ ︸ y

MX

This matrix has dimensions N × N and is a “residual maker:” if you premultiply y with
MX you get the OLS residuals
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Properties of the Projection Matrix

1 Symmetric: [IN − X(X ′X)−1X ′]′ = [I′N − X(X ′X)−1X ′] = [IN − X(X ′X)−1X ′]

2 Idempotent: Mq
X = MX

e.g. MXMX = MX [IN − X(X ′X)−1X ′]
= MX IN − MXX(X ′X)−1X ′] = MX
The last equality follows because MXX = 0 see property 3

3 MXX = 0
MXX = INX − X(X ′X)−1X ′X = X − X = 0N×k

4 MX ε̂ = ε̂
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Estimation of σ2

The variance-covariance matrix σ2(X ′X)−1 involves the disturbance variance σ2 which is
unknown
It is reasonable to base an estimate on the RSS from the fitted regression
We can use the projection matrix to derive this estimator:

ε̂ = Mxy = Mx(Xβ + ε) = Mxε

The last equality follows since MXX = 0 (see property 3 on the previous slide)
Thus:

E (ε̂′ε̂) = E (ε′M′
xMxε) = E (ε′Mxε)

The last equality follows from property 2 on the previous slide
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Estimation of σ2

(Remember in general tr(A) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 + a22 + a33)

Now we use the fact that the trace of a scalar is the scalar tr(a) = a if a is a scalar
From this it follows that

E (ε′Mxε) = E [tr(ε′Mxε)]

= E [tr(ε′εMx)]

= σ2trMx

= σ2tr(IN − X(X ′X)−1X ′)

= σ2tr IN − σ2tr [X(X ′X)−1X ′]

= σ2tr IN − σ2tr [(X ′X)−1X ′X ]

= σ2tr IN − σ2tr [IK ]

= σ2(N − k)
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Estimation of σ2

From this it follows that:
σ̂2 =

ε̂′ε̂

(N − k)

is an unbiased estimator of σ2

This is the matrix equivalent of the formula of the first weeks of the semester:

σ̂2 =
RSS

(N − k)

Hence the estimated standard errorof β̂ is: σ̂2(X ′X)−1
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Gauss-Markov Theorem

The Gauss Markov Theorem states that under GM1-4 the OLS estimator is the best linear
unbiased estimator (BLUE)
We have shown before that under GM1-3 OLS is a linear unbiased estimator (LUE)
We now show that it is the best, i.e. most efficient estimator
It is only the best if σ2(X ′X)−1 is a smaller variance than the variance of alternative
linear estimators
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Is There a Linear Estimator With Smaller Variance?

Any linear estimator will be

β̃ = A(X)
k×N

y = A(X)[Xβ + ε]

If A(X) is unbiased it must be that A(X)X = I
The variance of the alternative estimator would be

Var(β̃|X) = E (Aεε′A′|X)

Using GM4 this simplifies to:

Var(β̃|X) = AE (εε′|X)A′ = σ2AIA′ = σ2AA′
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Is There a Linear Estimator With Smaller Variance?

If the alternative estimator had smaller variance we would have:

Var(β̃|X)− Var(β̂|X) < 0

Var(β̃|X)− Var(β̂|X) = σ2AA′ − σ2(X ′X)−1

Now using the fact that A(X)X = I we can rewrite this as

= σ2AA′ − σ2AX(X ′X)−1X ′A′

= σ2A [IN − X(X ′X)−1X ′]︸ ︷︷ ︸A′

= MX

Because MX is symmetric and idempotent AMXA′ is positive semidefinite
Hence, OLS is BLUE
Note: Wooldridge also shows this proof without matrix algebra in section 3A.6. It is
much more cumbersome without matrix algebra
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GM Assumption 3 - Contemporaneously Uncorrelated

Last week we showed that GM3: E (ε|X) = 0 ensures that OLS is an unbiased estimator
What happens if we assume a weaker version of GM3?
In particular, consider GM3-contemporraneously uncorrelated (cu)

E (εixij) = corr(εi , xij) = 0

for all i and j
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GM3cu - Unbiased?

Would OLS remain unbiased under this weaker GM3cu?
From before we know that:

β̂ = β + (X ′X)−1X ′ε

If we take expectations we get:

E [β̂] = β + E [(X ′X)−1X ′ε]

(X ′X)−1X ′ is a function of all xij and not just a function of a single i hence
E [(X ′X)−1X ′ε] 6= 0
OLS would be biased in this case
However, it can be shown that under this weaker GM3cu β̂ is “aymptotically unbiased”
i.e. consistent as N → ∞
The proof of this is not trivial (wait for an MSc level econometrics course)
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Normality Assumption

We add the final classical linear model assumption: β̂ has a multivariate normal
distribution:

ε
N×1

|X ∼ N
↑

GM5

( 0
N×1
↑

GM3

, σ2 I
N×N

↑
GM4

)

This implies:
β̂|X ∼ N(β, σ2(X ′X)−1)

This assumptions allows us to carry out hypothesis tests and construct confidence
intervals
While this is a strong assumption, it can be shown that if N → ∞ the distribution of the
error term will converge to a Normal (proof not done in this course)
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t-Tests

Assumption GM5 also implies that:

β̂ − β ∼ N(0, σ2(X ′X)−1)

In practice we do not know σ2 but can estimate σ̂2

This, however, messes up the normality assumption:

β̂ − β � N(0, σ̂2(X ′X)−1)

What it the distribution in that case? We can show that it is distributed as a
t-distribution and hence we can use t-tests to test hypotheses about β
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t-Distribution vs. Normal Distribution
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t-Distribution

In general, suppose you have two independent random variables u and w with the
following properties:

u ∼ N(0, vu)

w ∼ χ2(df )

Then: u√vu√ w
df

∼ t(df )

Fabian Waldinger (LMU Munich) Lecture 3 18 / 21



χ2-Distribution

In general, if we sum the squares of N independent standard normal random variables
then this sum is distributed as a chi-square distribution:
e.g. if v ∼ N(0, IN) then:

v ′v ∼ χ2(N)

If v ∼ N(0, IN) and A is an idempotent matrix with rank(A) = q then:

v ′Av ∼ χ2(q)
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Distribution of the Test Statistic

Now we show that the standard test statistic for t-test is distributed as a t-Distribution
Under GM5:

ε|X ∼ N(0, σ2I) → ε

σ
∼ N(0, I)

Hence:

ε′Mxε

σ2 ∼ χ2(N − k
↑

rank MX

)

From above we also know:
β̂ − β ∼ N(0, σ2(X ′X)−1)
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Distribution of the Test Statistic

Now we define the test statistic as follows

β̂−β√
σ2(X′X)−1√

ε′Mxε
σ2

N−k

=

β̂−β√
σ2(X′X)−1√

ε̂′ε̂
σ2(N−k)

=

β̂−β√
σ2(X′X)−1√

σ̂2

σ2

=

β̂−β√
(X′X)−1
√
σ̂2

∼ t(N − k)

The first equality follows because Mxε = Mx(y − Xβ) = Mxy − MxXβ = Mxy = ε̂,
hence ε′Mxε = ε′M′

xMxε = ε̂′ε̂

We can rewrite this as:

β̂ − β√
σ̂2(X ′X)−1

∼ t(N − k)

This is the standard formula for the t-test: β̂−β0

se(β̂)
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