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Recap from Last Lecture |

o GM Assumptions:

@ The true model is linear in parameters: y = X3 +¢
@ No Perfect Collinearity: the matrix X has rank k
@ Zero Conditional Mean: E(¢|X) =0

@ Var(e|X) = o2l
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Recap from Last Lecture Il

o Under GM1-GM3 the OLS estimator is unbiased
E(BIX) = B+E[X'X)'XelX]
= B+ (X'X)"IX'E[¢|X]
= g
o Additionally imposing GM4 we can show that

Var(B)X) = o?(X'X) 7t
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The Projection Matrix

o In the following, we will introduce the projection matrix

o This matrix is useful for many derivations
E=y—XB=y—X(X'X)"1X'y
= [In—X(X'X)"'X']y
M x

o This matrix has dimensions N x N and is a “residual maker:" if you premultiply y with
Mx you get the OLS residuals
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Properties of the Projection Matrix

@ Symmetric: [Iy — X(X'X)71X') = [If, — X(X'X)71X'] = [In — X(X'X) 71 X]

@ ldempotent: M} = Mx
e.g. MxMx = Mx[IN — X(X/X)_lxl]
= Mxln — MxX(X/X)flxl] = My
The last equality follows because MxX = 0 see property 3

@ MxX=0
MxX = IyX — X(X'X)"1X'X = X — X = Opx

@ Mxé=¢
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Estimation of o2

o The variance-covariance matrix o(X’X)~! involves the disturbance variance o which is
unknown

It is reasonable to base an estimate on the RSS from the fitted regression

©

o We can use the projection matrix to derive this estimator:

&= Myy = My(XB +¢) = Mye

The last equality follows since MxX = 0 (see property 3 on the previous slide)
Thus:

©

©

E(&'¢) = E(e'M.Mye) = E(c'Mxe)

©

The last equality follows from property 2 on the previous slide
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Estimation of o2
a1 a2 a3
o (Remember in general tr(A) = | ax ax a3 | = a1 + ax + as3)
31 4932 433
o Now we use the fact that the trace of a scalar is the scalar tr(a) = a if a is a scalar
o From this it follows that
E(e'Mye) = E[tr(e'Mye)]
E[tr(e'eMy)]
0’2trMX
o?tr(Iy — X(X'X)71X")
a?triy — o?tr[ X(X'X) 71 X']
a?triy — o?tr[(X' X)L X' X]
a?triy — o?tr[lk]
= o%(N — k)
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Estimation of o2

o From this it follows that:
Al A
o &'é

6= —-—

(N — k)

is an unbiased estimator of o2
o This is the matrix equivalent of the formula of the first weeks of the semester:

,2_ RSS

(N — k)

o Hence the estimated standard errorof 3 is: 62(X’'X)™1
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Gauss-Markov Theorem

o The Gauss Markov Theorem states that under GM1-4 the OLS estimator is the best linear
unbiased estimator (BLUE)

o We have shown before that under GM1-3 OLS is a linear unbiased estimator (LUE)
o We now show that it is the best, i.e. most efficient estimator

o It is only the best if 02(X’X)~! is a smaller variance than the variance of alternative
linear estimators
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Is There a Linear Estimator With Smaller Variance?

Any linear estimator will be

©

B=A(X)y = A(X)[X5 +¢]

kxN

If A(X) is unbiased it must be that A(X)X =1
The variance of the alternative estimator would be

(]

(]

Var(8]X) = E(Ass' A'| X)

©

Using GM4 this simplifies to:

Var(B|X) = AE(e</| X)A' = 2 AIA' = o AN
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Is There a Linear Estimator With Smaller Variance?

o If the alternative estimator had smaller variance we would have:
Var (3] X) — Var(|X) < 0
Var(B|X) — Var(B|X) = 02 AA’ — a(X’'X)
o Now using the fact that A(X)X = I we can rewrite this as

= 02AA — PPAX(X'X)IX'A!
= Ay — X(X'X)IX A

Because My is symmetric and idempotent AMxA’ is positive semidefinite
Hence, OLS is BLUE

o Note: Wooldridge also shows this proof without matrix algebra in section 3A.6. It is
much more cumbersome without matrix algebra

(]

©
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GM Assumption 3 - Contemporaneously Uncorrelated

©

Last week we showed that GM3: E(¢|X) = 0 ensures that OLS is an unbiased estimator

©

What happens if we assume a weaker version of GM37

In particular, consider GM3-contemporraneously uncorrelated (cu)

©

E(eixjj) = corr(ei, xjj) =0

©

for all / and j
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GM3cu - Unbiased?

Would OLS remain unbiased under this weaker GM3cu?

From before we know that:

©

©

B=p8+(X'X)"1Xe
o If we take expectations we get:

E[B] = B+ E[(X'X) "' X¢]

©

(X’X)71X’ is a function of all x;; and not just a function of a single i hence
E[(X'X)"1X'e] #0
OLS would be biased in this case

o However, it can be shown that under this weaker GM3cu f is “aymptotically unbiased”
i.e. consistent as N — oo

©

(]

The proof of this is not trivial (wait for an MSc level econometrics course)
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Normality Assumption

o We add the final classical linear model assumption: BA has a multivariate normal
distribution:
X~ N(O0,0%1)
Nx1 T Nx1 NxN
GM5 T T
GM3 GM4
o This implies:
A 2 -1
BIX ~ N(B,0°(X'X)™H)
o This assumptions allows us to carry out hypothesis tests and construct confidence
intervals
o While this is a strong assumption, it can be shown that if N — oo the distribution of the

error term will converge to a Normal (proof not done in this course)
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t-Tests

©

Assumption GM5 also implies that:
B =B~ N(0,o*(X' X))

In practice we do not know o2 but can estimate 2

©

©

This, however, messes up the normality assumption:
B =B~ N(0,6°(X X))

What it the distribution in that case? We can show that it is distributed as a
t-distribution and hence we can use t-tests to test hypotheses about 3

©
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Standard normal
t-distribution with df =5
t-distribution with df =2
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t-Distribution

o In general, suppose you have two
following properties:

o Then:
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independent random variables u and w with the

u~ N(0, v,)
W~ Xz(df)

u

"~ t(df)

w

B

3

Lecture 3

18/21



x2-Distribution

o In general, if we sum the squares of N independent standard normal random variables
then this sum is distributed as a chi-square distribution:

o e.g. if v~ N(O,/y) then:
Vv~ ()

o If v~ N(0,/y) and A is an idempotent matrix with rank(A) = q then:

vV'Av ~ x*(q)
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Distribution of the Test Statistic

o Now we show that the standard test statistic for t-test is distributed as a t-Distribution

o Under GM5:

e|X ~ N(0,521) — = ~ N(O, 1)
g

o Hence:

o From above we also know:
B—B~ N0 o*(X' X))
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Distribution of the Test Statistic

o Now we define the test statistic as follows

B8 B-8 BB
2 ’ 2 ’ —1 2 ’ —1
\/O’ X X \/0 (X X) \/U ( \/(X X) ~ t(N o k)

’st g'é 02 52
o2(N—k) o2

o The first equality follows because Mye = My(y — X3) = Myy — MyX3 = Myy = £,
hence ¢’ Mye = &' M Mye = &'¢

o We can rewrite this as:

o This is the standard formula for the t-test: i—(g;
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