Peer Effects

Fabian Waldinger (University of Warwick)

Ξ

イロト イロト イヨト イヨト

- Localized (within-firm) peer effects among low skilled workers: Mas and Moretti (2009)
- Peer effects among high-skilled workers: Waldinger (2012)
 See also (next week): Borjas and Doran (2012) and Moser, Voena, and Waldinger (2014)
- ③ Peer effects for both high and low skilled: Cornelissen, Dustmann and Schoenberg (2015)

A E F A E F

- Why could firm-level peers affect productivity?
 - Peer pressure (other workers have to observe your productivity)
 - Pro-social behaviour (focal worker needs to know what the others are doing but not vice versa)
 - ③ Knowledge-spillovers
- Understanding peer effects is important. If there is an externality the market will not optimally allocate workers

- Mas and Moretti (2009) investigate peer effects among 394 super-market cashiers from 6 stores
- If a cashier works slowly customers can choose another line
- Scanner data allow them to observe individual level productivity: number of items scanned per second
- They relate ten-minute changes in each cashier's productivity to changes in the average permanent productivity of other workers
- Average permanent productivity of co-workers varies because worker shifts do not perfectly overlap

Supermarket Cashiers

Empirical Specification

• They estimate the following regression model:

$$y_{itcs} = \theta_i + \beta \bar{\theta}_{-itcs} + \pi \# \text{ workers}_{tcs} \\ + \tau \text{ register location} FE_{ics} + \gamma \text{ time } * \text{ day } * \text{ store} FE_{tds} + e_{itcs}$$

- where *i* indexes a worker, *t* time (10-minute interval), *c* calender date, *s* store
- θ_i measures permanent productivity of worker i
- $\bar{\theta}_{-itcs}$ measures average productivity of co-workers (leave-out mean)
- They take first differences to estimate:

$$\Delta y_{itcs} = \alpha + \beta \Delta \bar{\theta}_{-itcs} + \pi \Delta \# \text{ workers}_{tcs} + e_{itcs}$$

- To calculate $\bar{\theta}_{-itcs}$ they need unbiased estimates of all θ_i
- Estimation Steps:
 - 1 To get these they estimate the following regression model:

$$\begin{array}{ll} y_{itcs} & = & \theta_i + M' \varphi_{Ci} + \pi \ \# \ workers_{tcs} \\ & + & \tau \ register \ locationFE_{ics} + \gamma \ time * \ day * \ storeFE_{tds} + e_{itcs} \end{array}$$

- where φ_{Ci} is a very large set of dummy variables: one for every possible combination of coworker composition
- For example one dummy for every instance worker 1 works with workers 2,3,4 and another dummy for every instance 1 works with 2,9, and 12
- 2) take the estimated θ_i s and calculate $\bar{\theta}_{-itcs}$ for every worker and shift
- 3 Estimate regression equation (2) (previous slide)

イロト 不得ト イヨト イヨト

Descriptive Statistics

	Store # 1	Store # 2	Store # 3	Store # 4	Store # 5	Store # 6	All stores
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Share of ten-minute interval	0.67	0.61	0.64	0.69	0.68	0.60	0.65
that checkers are transacting	[0.32]	[0.25]	[0.28]	[0.26]	[0.24]	[0.26]	[0.27]
Minutes per customer	1.4	1.2	1.6	1.3	1.4	1.4	1.4
	[1.0]	[1.1]	[1.1]	[1.1]	[0.86]	[0.91]	[1.0]
Productivity in ten-minute	0.18	0.16	0.17	0.16	0.18	0.20	0.17
intervals	[0.09]	[0.07]	[0.08]	[0.07]	[0.07]	[0.08]	[0.08]
Checkers on duty in ten-	5.8	5.9	4.7	7.7	8.3	7.0	6.9
minute intervals	[1.9]	[1.6]	[1.7]	[2.1]	[2.4]	[2.3]	[2.4]
Estimated individual fixed effects	[0.07]	[0.12]	[0.08]	[0.08]	[0.09]	[0.09]	[0.09]
Average coworker permanent productivity	[0.04]	[0.06]	[0.04]	[0.03]	[0.04]	[0.04]	[0.04]
Change in coworker permanent productivity	[0.02]	[0.03]	[0.03]	[0.02]	[0.02]	[0.02]	[0.02]

Ξ

イロト イロト イヨト イヨト

Permanent Productivity (i.e. θ_i) Differs Across Workers

10% Increase in Co-Worker Quality Increases Prod. by 1.5%

	(1)	(2)	(3)	(4)
Δ Average coworker permanent productivity	0.15 (0.02)	0.15 (0.02)	0.13 (0.03)	-0.03 (0.03)
Δ Average coworker permanent productivity \times positive Δ indicator				0.24 (0.05)
Positive Δ indicator				0.004 (0.001)
Entry of above average productivity worker				
Exit of an above average productivity worker				
Observations	1,718,052	1,718,052	823,274	1,718,052
Additional controls?		Yes		
No net change in number of workers from $t - 1$ to t ?			Yes	

Column (4) indicates that increases in worker quality (as opposed to decreases) have particularly significant effects

Fabian Waldinger (University of Warwick

Effect of a High-Productivity Worker Starting at t=0

Co-Workers Only Affect Workers Who Are in Line of Sight

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- Very clean evidence on peer effects
- Results only valid if workers are indeed randomly assigned
- Results on line of sight are not only consistent with peer pressure as the main channel but also support random assignment

Methodology: Instrumental Variables

- Instrumental Variables can solve many endogeneity problems encountered in economics:
 - Simultaneity
 - 2 Measurement Error
 - ③ Omitted Variable Bias.
- Look at an example from the returns to education literature
- Suppose the true model is:

$$ln(y) = \beta_1 + \beta_2 S + \beta_3 A + \varepsilon_1$$

But we estimate:

$$ln(y) = \beta_1 + \beta_2 S + \varepsilon_2$$

• where $\varepsilon_2 = \beta_3 A + \varepsilon_1$

Methodology: Instrumental Variables

• The OLS estimator would then be:

$$\hat{\beta}_2^{OLS} = rac{Cov(Y,S)}{Var(S)}$$

- We can show that $plim \hat{\beta}_2^{OLS} = \beta_2 + \beta_3 \frac{Cov(A,S)}{Var(s)}$
- Suppose we can use Z as an instrument for S. Two conditions for a valid IV:
 - **1** Z is uncorrelated with $\varepsilon_2 \Rightarrow Cov(Z, \varepsilon_2) = 0$ (Exclusion Restriction)
 - 2 Correlated with $S \Rightarrow Cov(Z, S) \neq 0$ (First Stage exists)

If there is only one endogenous regressor and one instrument the IV estimator is:

$$\hat{\beta}_2^{IV} = \frac{Cov(Y,Z)}{Cov(S,Z)}$$

イロト 不得下 イヨト イヨト 二日

Methodology: Instrumental Variables

- The IV estimator is consistent.
- Substitute true model for Y:

$$\hat{\beta}_{2}^{IV} = \frac{Cov([\beta_{1} + \beta_{2}S + \beta_{3}A + \varepsilon_{1}], Z)}{Cov(S, Z)}$$
$$= \beta_{2} \frac{Cov([S], Z)}{Cov(S, Z)} + \beta_{3} \frac{Cov([A], Z)}{Cov(S, Z)} + \frac{Cov([\varepsilon_{1}], Z)}{Cov(S, Z)}$$

• plim $\hat{\beta}_2^{OLS} = \beta_2$

because Cov([A], Z) = 0 and Cov([ε₁], Z = 0 due to the exclusion restriction, and Cov(S, Z) ≠ 0 if a first stage exists.

< ロト (伊) (王) (-)

Methodology: Instrumental Variables Jargon

• Estimated Model:

$$ln(y) = \beta_1 + \beta_2 S + \varepsilon_1$$

S is the endogenous regressor.

- One way to estimate IV is two-stage-least squares (2SLS):
- First Stage Regression:

$$S = \gamma_1 + \gamma_2 Z + \mu$$

• Second Stage Regression:

$$\ln(y) = \beta_1 + \beta_2 \hat{S} + \varepsilon_3$$

Reduced Form:

$$ln(y) = \delta_1 + \delta_2 Z + \varepsilon_4$$

Methodology: IV with Heterogenous Treatment Effects

- With heterogeneity in returns one can potentially estimate different parameters
 - Average Treatment Effect (ATE) (the average effect in the population. E.g. What would be the average increase in earnings if you increase schooling of everybody by one year
 - ② Treatment Effect on the Treated How does the outcome change for those who received a certain treatment?
 - 3 Treatment Effect on the Untreated How would the outcome change if the untreated received the treatment?
 - Local average treatment effect (LATE) How does the outcome change for those who were induced by the instrument to obtain treatment

イロト 不得ト イヨト イヨト

Methodology: IV with Heterogenous Treatment Effects

- With heterogeneous treatment effects IV does not estimate the average treatment effect but the LATE. (see Imbens and Angrist 1995)
- Their framework is developed for a binary instrument and a binary treatment but the results generalize to non-binary setups
- With heterogeneous treatment effects IV will estimate the treatment effect of the so-called compliers

- The LATE framework partitions any population with an instrument into 3 instrument-dependent subgroups:
 - Compliers: The subpopulation which only receives the treatment if the instrument is equal to 1.
 - 2 Always-takers: The subpopulation that always receives treatment independently of the value of the instrument
 - ③ Never-takers: The subpopulation that never receives treatment independently of the value of the instrument

・ロト ・ 同ト ・ ヨト ・ ヨト

Localized Spillovers Among Academics

- In Waldinger (2012) I analyze localized peer effects among university scientists.
- Estimating spillovers among academics is challenging:
 - Selection of scientists
 - 2 Omitted variables
 - 3 Measurement error
- I therefore use the dismissal of scientists in Nazi Germany as an exogenous source of variation that affected:
 - the number of peers
 - the quality of peers

Dismissal of Scientists

	Phy	sics	Chemistry		Mathematics	
Year of dismissal	Number of dismissals	% of all physicists in 1933	Number of dismissals	% of all chemists in 1933	Number of dismissals	% of all mathematicians in 1933
1933	33	11-5	50	10.7	35	15-6
1934	6	2.1	11	2-4	6	2.7
1935	4	1-4	5	1.1	5	2.2
1936	1	0-3	7	1.5	1	0-4
1937	1	0-3	3	0-6	2	0.9
1938	1	0-3	4	0.9	1	0-4
1939	1	0-3	2	0-4	1	0-4
1940	1	0-3	0	0-0	1	0-4
1933-1934	39	13-6	61	13-1	41	18-3

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

Dismissal Across Different Universities

	Physics				-	
	Scien- tists	Dis 193	missed 3–1934	Dismissal induced ∆ to department		
University	1933	No.	%	quality		
Aachen TU	3	0	0	0	-	
Berlin	38	8	21.1	_		
Berlin TU	21	6	28.6	_		
Bonn	12	1	8-3	+		
Braunschweig TU	4	0	0	0		
Breslau	12	2	16.7	+		
Breslau TU	1	0	0	0		
Darmstadt TU	9	1	11.1	+		
Dresden TU	6	1	16.7	-		
Erlangen	4	0	0	0		
Frankfurt	12	1	8.3	_		
Freiburg	8	0	0	0		
Giessen	5	1	20.0	-		
Göttingen	21	9	42.9	-		
Greifswald	6	0	0	0		
Halle	4	0	0	0		
Hamburg	11	2	18.2	+		
Heidelberg	8	0	0	0	> < 분 >	E 990
Fabian Waldinger (University of Warwick	P	eer Effect	ts			23 / 41

990

Dismissal Across Different Universities

Kiel	8	1	12.5	-
Köln	8	1	12.5	+
Königsberg	8	0	0	0
Leipzig	11	2	18.2	+
Marburg	6	0	0	0
München	12	3	25-0	+
München TU	10	1	10	+
Münster	5	0	0	0
Rostock	3	0	0	0
Stuttgart TU	5	0	0	0
Tübingen	2	0	0	0
Würzburg	3	0	0	0

Summary Statistics Dismissed vs. Stayers

		Phy	SICS	
			Dist 1933	nissed –1934
	All	Stayers	No.	% Loss
Researchers (beginning of 1933)	287	248	39	13.6
Researchers (beginning of 1933)	287	248	39	13.6
No. of chaired professors	109	97	12	11.0
Average age (1933)	49.5	50.2	45-1	_
No. of Nobel Laureates	15	9	6	40.0
Publications 1925-1932				
Average publications	0.47	0.43	0.71	20.5
Average publications (citation weighted)	5.10	3.53	14.79	39.4

Ξ

イロト イロト イヨト イヨト

Effect on Department Size

Effect on Peer Quality

Estimating Localized Peer Effects

• OLS model to estimate peer effects among university researchers:

$$Pub_{iut} = \beta_1 + \beta_2 (Avg. Peer Quality)_{ut-1} + \beta_3 (\# of Peers)_{ut-1} + \beta_4 Age Dummies_{iut} + \beta_5 YearFE_t + \beta_6 IndividualFE_i + \varepsilon_{iut}$$

• Using the dismissals to instrument for the two endogenous variables. The 2 first stages are:

$$\begin{array}{ll} (Avg. \ Peer \ Quality)_{dt} = & \gamma_1 + \gamma_2 (DismissalInduced \downarrow inPeerQuality) \\ & + & \gamma_3 (\#Dismissed + & \gamma_4 Age \ Dummies_{iut} + \gamma_5 YearFE_t + \gamma_6 IndividualFE_i + & \gamma_4 Age \ Dummies_{iut} + & \gamma_5 YearFE_t + & \gamma_6 IndividualFE_i + & \gamma_6 In$$

$$(\# of Peers)_{ut-1} = \delta_1 + \gamma_2(DismissalInduced \downarrow inPeerQuan) + \gamma_3(\#DismissalInduced \downarrow inPeerQuan) + \gamma_4 Age Dummies_{iut} + \gamma_5 YearFE_t + \gamma_6 IndividualFE_i$$

Reduced Form - Graph

Reduced Form - Regression

	Phy	ysics			
Dependent variable	Publications	Cit. weighted publications			
Dismissal induced fall	0.029	0.312	-		
in peer quality	(0.015)	(0.235)			
Number dismissed	-0.021	-0.017			
	(0.017)	(0.302)			
Age dummies	Yes	Yes			
Year dummies	Yes	Yes			
Individual FE	Yes	Yes			
Observations	2261	2261			
No. of researchers	258	258			
R-squared	0.39	0.25	- ≣ →	111	୬୯୯
Fabian Waldinger (University of Warwick	Peer Effects				30 / 41

First Stages

	Phy	Physics		
Dependent variable	Peer quality	Department size		
Dismissal induced fall	-0.644**	-0.147		
in peer quality	(0.099)	(0.130)		
Number dismissed	0.017	-0.570^{**}		
	(0.098)	(0.117)		
Age dummies	Yes	Yes		
Year dummies	Yes	Yes		
Individual FE	Yes	Yes		
Observations	2261	2261		
No. of researchers	258	258		
R^2	0.59	0.90		
F-Test on instruments	81.9	103.10		
Cragg-Donald EV statistic	12.8			

	OLS	IV	OLS	IV	
		Phy	ysics		-
Dependent variable:	Publi- cations	Publi- cations	Cit. weigt. Pubs.	Cit. weigt. Pubs.	-
Peer quality	0.004	-0.054	-0.048	-0.488	-
	(0.005)	(0.035)	(0.075)	(0.496)	
Department size	-0.007	0.035	-0.177**	0.016	
	(0.004)	(0.034)	(0.062)	(0.553)	
Age dummies	Yes	Yes	Yes	Yes	
Year dummies	Yes	Yes	Yes	Yes	
Individual FE	Yes	Yes	Yes	Yes	
Observations	2261	2261	2261	2261	
No. of researchers	258	258	258	258	
R^2	0.39		0.25		
Cragg–Donald EV Stat.		12.79		12.79	E ∽ < (~
Fabian Waldinger (University of Warwick	Peer Ef	fects			32 / 41

Are We Considering the Right Peer Group? - Specialization Level Results

	IV	IV
	Phy	ysics
Dependent variable	Publications	Cit. weighted Publications
Specialization peer quality	-0.021	-0.410
	(0.029)	(0.581)
No. of specialization peers	-0.021	-0.727
	(0.029)	(0.482)
Age dummies	Yes	Yes
Year dummies	Yes	Yes
Individual FE	Yes	Yes
Observations	2257	2257
No. of researchers	256	256
Cragg–Donald EV Stat.	81.80	81.80

Э

Do High-Quality Peers Matter?

	IV	IV		
	Р	hysics	-	
Dependent variable	Publi- cations	Cit. weighted publications		
Number of peers	-0.003 (0.013)	-0.329 (0.198)	-	
Number of top 50th percentile peers	-0.003	-0.221 (0.142)		
First-stage F-statistic	241.1	241.1		
Number of top 25th percentile peers	-0.015 (0.016)	-0.637* (0.239)		
First-stage F-statistic	423.7	423.7		
Number of top 10th percentile peers	-0.011 (0.032)	-0.695 (0.395)		
First-stage F-Statistic	29.6	29.6		
Number of top 5th percentile peers	-0.031 (0.043)	-1·336* (0·626)	_	
First-stage F-statistic	201.6	201.6	> < 분 >	
Fabian vvaldinger (University of vvarwick Peer Effects				34 / 41

How Do the Two Sets of Results Go Together?

- Cornelissen, Dustmann, and Schoenberg (2015) analyze peer effects for both low and high-skilled workers in the same context
- While they cannot rely on quasi-experimental variation to identify peer effects they use worker movement across firms to identify peer effects for a very large sample of workers
- Unlike the two previous papers they investigate how wages of peers affect the focal worker's wages
- Sample: all workers in a large local labor market in GermanyVery nice evidence that effective patent length (as measured by expected survival) affects innovation incentives

Summary Statistics

2,115,544	No. of workers
89,581	No. of firms
1,387,216	Number of peer groups (occupations within firm-years)
6.07	Average number of time periods per worker
2.30	Number of peer groups per firm-year
1.60	Average number of employers per worker
1.40	Average number of occupations per worker
0.995	Share of mobility group with identified firm fixed effects
0.994	Share of mobility group with identified firm-time fixed effects
0.983	Share of mobility group with identified firm-occupation fixed effects
0.32	St. dev. worker fixed effect
0.24	St. dev. average peer fixed effect

• They estimate the following regression model:

$$egin{aligned} n(w)_{iojt} = & a_i + \gamma ar{a}_{-iojt} + Controls \ & + & Occ imes YearFE_{ot} + Firm imes YearFE_{jt} + Occ imes FirmFE_{oj} + arepsilon_{iojt} \end{aligned}$$

- Where *i* indexes the worker, *o* the occupation, *j* the establishment, and *t* the year
- Like Mas and Moretti (2009) they need to first consistently estimate the individual FE and then include them in the model (they estimate them slightly differently than Mas and Moretti)

- 4 伊ト - モト - モト

	(1) outside option and firm fixed effects	(2) plus firm-occupation fixed effects	(3) plus firm-occupation and firm-year fixed effects
Average peer fixed effect	0.148	0.066	0.011
	(0.002)	(0.002)	(0.001)
Worker Fixed Effects	Yes	Yes	Yes
Occupation X Year Effects	Yes	Yes	Yes
Firm Effects	Yes	-	-
Occupation X Firm Effects	-	Yes	Yes
Firm X Year Effects	-	-	Yes

Ξ

《曰》 《聞》 《문》 《문》

	(1)	(2)	(3)		
Panel A: Peer Effects for Sub-Samples of Low Skilled Occupations					
	5% most repetitive occupations	As in case studies	Low learning content		
Average peer fixed effect	0.064	0.067	0.052		
	(0.0070)	(0.0116)	(0.0031)		
Panel B: Peer Effects for Sub-Samples of High Skilled Occupations					
	10% most skilled	10% most innovative	High loarning contont		
	occupations	occupations	nightearning content		
Average peer fixed effect	0.013	0.007	0.017		
	(0.0039)	(0.0044)	(0.0028)		

Ξ

《曰》 《聞》 《臣》 《臣》

- The well-identified literature that estimates localized spillovers within firms usually finds:
 - positive effects for low-skilled workers
 - 0 or very small effects for high-skilled workers
- What could explain the diverging findings?
 - Is the effect of peer pressure less important for high-skilled individuals?
 - Are localized knowledge spillovers less important than economists think?
 - Do the high-skilled collaborate outside firm boundaries?

- It is striking that within-firm results usually do not find evidence for peer effects among the high-skilled
- Literature on spillovers across firms (see last week) find externalties (albeit driven by different factors depending on the paper)
- What is going on?
 - Are across firm spillovers more important than within-firm ones?
 - Are within-firm papers better identified?
 - A lot of open questions...