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Abstract

We study how performance metrics affect the allocation of talent by exploiting the
introduction of the first citation database in science. For technical reasons, it only
covered citations from certain journals and years, creating quasi-random variation: some
citations became visible, while others remained invisible. We identify the effects of citation
metrics by comparing the predictiveness of visible to invisible citations. Citation metrics
increased assortative matching between scientists and departments by reducing information
frictions over geographic and intellectual distance. Highly-cited scientists from lower-ranked
departments (“hidden stars”) and from minorities benefited more. Citation metrics also

affected promotions and NSF-grants, suggesting Matthew effects.
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The allocation of talent to productive positions in society is of utmost importance
for the creation of new ideas, technological progress, and economic growth (e.g., Murphy
et al., 1991; Jones, 1995; Weitzman, 1998; Romer, 1986, 1990; Hsieh et al., 2019). As talent
is scarce, private sector firms and universities increasingly rely on performance metrics
to identify talented individuals (e.g., Hoffman et al., 2018; Forbes, 2013). In academia,
performance metrics based on citations and publications affect hiring, promotions, wages,
research funding, and the prestige of academics (e.g., Hamermesh and Schmidt, 2003;
Ellison, 2013). Due to their increasing use, concerns have been raised about a potential
overreliance on performance metrics in science (DORA, 2013; CoARA, 2022). Despite the
importance of such metrics, as well as the recent discussions, there is virtually no evidence
that quantifies how performance metrics affect the organization of science.

In this article, we provide the first systematic evidence of the impact of performance
metrics on the allocation of talent and on scientific careers. Specifically, we study how
citation metrics affect the assortative matching between scientists and universities, which
groups benefit most from citation metrics, and how citation metrics affect career outcomes,
such as promotions and research funding.

Our empirical strategy exploits the introduction of the Science Citation Index (SCI),
which led to quasi-random variation in the visibility of individual scientists’ citation
counts. While researchers always had a rough sense of the influence of scientific work,
it was impossible to systematically measure citations until the 1960s. This changed
fundamentally in 1963 when Eugene Garfield published the first Science Citation Index
(SCI). For the first time, it became possible to identify the highest-cited papers and
researchers. The Nobel laureate and molecular biologist Joshua Lederberg lauded the
invention of the SCI with the words: “I think you're making history, Gene!” (Wouters,
2017). Scientists, funding bodies, and university administrators immediately started to
use citation counts in hiring, promotion, and funding decisions. The sociologist Harriet
Zuckerman remarked in the New York Times that there are “cases of people who have
been asked to go count their own citations, and also of deans and administrations who
have asked for citation counts” (Charlton, 1981).

In the first part of the article, we investigate how the availability of citation metrics
affects the assortative matching between scientists and departments. We document that the
correlation between scientists’ citation counts and the rank of their department increased
by 61%. At the same time, scientists’ publication counts became 46% less predictive of
their department rank. These over-time changes suggest that hiring committees started to
attach more weight to citation counts and less weight to other observable characteristics
such as publications when evaluating candidates. The increased correlation between
scientists’ citations and the ranking of their departments may be spurious for various
reasons. For example, the increasing importance of expensive research labs and of federal
research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading

departments and allow them to attract star scientists, who turn out to be highly cited.



Similarly, increases in team production (e.g., Wuchty et al., 2007; Jones, 2009) may have
spurred collaborations within departments and, hence, made department quality more
critical for citations of individual scientists.

We estimate the causal effect of citation metrics by exploiting that, for technical
reasons, the SCI only covered citations in a subset of years and journals. Only these
citations became visible to the scientific community. In contrast, other citations remained
inwisible to contemporaries, yet are observable in modern citation data. The variation in the
visibility of citations stems from two sources: variation in the coverage of citations (1) over
time and (2) across journals. First, citations appearing in citing articles until 1960 were
invisible. With the first edition of the SCI, citations from citing articles in 1961 became
visible. Due to technological constraints, the coverage of the SCI was interrupted for two
years. Hence, citations appearing in citing articles in 1962 and 1963 remained invisible at
the time. After 1964, the SCI was published yearly, and thus citations appearing in citing
articles after 1964 became visible. Second, due to a lack of computing power, the SCI
only covered citations in certain journals. As a result, some citations appearing in covered
years (1961 and from 1964 onwards) remained invisible if they came from citing articles
published in journals not indexed by the SCI. Crucially, in the early years, the selection
of citing journals was somewhat arbitrary because the lack of citation data meant that
journal rankings did not exist.!

Importantly, our empirical strategy exploits when and where a scientist’s papers were
cited, not when and where they were published. The cited papers could be published in
any journal and in any earlier year. The following example of two hypothetical scientists
illustrates our identification strategy: suppose that both scientists published a paper in
1957 (in any journal). One of the papers was cited in Nature in 1961, while the other one
was cited in Nature in 1962. As the SCI covered citations in 1961 but not in 1962, the
first citation became visible to contemporaries, while the second remained invisible. Using
modern citation data, we can, however, observe both visible and invisible citations.

For our analysis, we combine new data on historical faculty rosters of U.S. universities
from the World of Academia Database (laria et al., 2022) with extensive publication and
citation data from Clarivate Web of Science. These data enable us to construct the most
comprehensive individual and department-level rankings for the 1960s. In addition, we
digitize lists from historical volumes of the SCI, which specify the exact citing journals
that were indexed in each volume of the SCI. This allows us to measure which citations
were visible and, thus, to reconstruct the information set available to scientists in the
1960s.

We estimate the effect of citation metrics on the match between scientists and depart-
ments by comparing the relative importance of visible to invisible citations. We find that

visible citations are four times as predictive of scientists’ department rank than invisible

In fact, the impact factor, which nowadays is used to rank academic journals, was invented by the
creators of the SCI (Garfield, 1979, p. 150).



citations. Specifically, scientists with a 10 percentile higher visible citation count were,
on average, placed at a 2.5 percentiles higher ranked department in 1969. For instance,
a mathematician would be placed at Princeton or Chicago as opposed to Columbia or
Brandeis. In contrast, scientists with a 10 percentile higher invisible citation count were
on average only placed at a 0.6 percentiles higher ranked department. This pattern holds
even if we control for detailed publication records, i.e., for the number of publications in
each journal (e.g., two Nature, one Science, and one PNAS publication) and in each year
(e.g., one publication in 1956, two in 1960, and one in 1964). Note that it is not surprising
that even invisible citations affect the matching between scientists and departments since
the academic community always had some knowledge of the quality of scientists’ research,
even if precise citation counts were not available.

Despite the somewhat arbitrary nature of the SCI coverage, two main concerns could
potentially invalidate this identification strategy. First, visible citations may come from
articles in higher-quality journals. Second, as the SCI was introduced in 1961, visible
citations occur in later years, on average, and may have a larger impact on career outcomes
in 1969. As a consequence, the impact of visible citations on scientists’ careers would be
overestimated.

To address the quality concern, we compute measures of the quality of citing journals.
We find that visible and invisible citations come from journals of similar quality. We also
provide further evidence that differences in the quality of citing journals do not bias our
results. For this test, we estimate regressions that only consider citations from the set of
citing journals that were indexed in the first edition of the SCI. This analysis compares
scientists whose paper was cited, for example, in Science in 1961, and was therefore visible,
to scientists whose paper was cited in Science in 1963, and was therefore invisible.

To address the timing concern, we confirm that the results hold in specifications that
exclusively rely on across-journal variation in the visibility of citations. This analysis
compares scientists whose paper was cited in the same year (e.g., 1961), but one citation
occurred in the Journal of the American Chemical Society, and was thus visible in the
SCI, while the other citation occurred in Chemical Reviews, and was thus invisible.

The quality of citing journals and the timing of citations could interact to make
visible citations more predictive for assortative matching. To address this concern, we
introduce an additional specification. For this test, we partition the citation space into
four mutually exclusive sets depending on where and when a scientist was cited: (1) wvisible
citations: citations from journals that were indexed in the SCI in years when the SCI was
published; (2) pseudo-visible citations: citations from journals that were indexed in the
SCI in 1961 but from years when the SCI was not published; (3) invisible citations (SCI
years): citations from journals that were not indexed in the SCI in years when the SCI
was published; and (4) invisible citations (non-SCI years): citations from journals that
were not indexed in the SCI in 1961 and from years when the SCI was not published.

We find that the coefficient on visible citations is almost identical to the baseline



specification. Moreover, the coefficient on pseudo-visible citations is considerably smaller
and very similar to the two coefficients on invisible citations in SCI years and in non-SCI
years. This indicates that citations in journals that were indexed by the SCI only had a
differential impact in years in which the SCI was actually available. These results support
the validity of our identification strategy.

Next, we shed light on two potential mechanisms that could underlie the increase
in assortative matching based on citation metrics. First, scientists with few citations
may have disproportionately left academia. We find that scientists with a 10 percentile
higher visible citation count were 3.4 percentage points (or 5.0 percent) less likely to
leave academia between 1956 and 1969. In contrast, invisible citations did not affect the
probability of leaving academia. Second, highly cited scientists may have moved to higher-
ranked departments. We show that scientists with a 10 percentile higher visible citation
count were 0.8 percentage points (or 17.5 percent) more likely to move to a higher-ranked
department between 1956 and 1969. Invisible citations had no effect on moving to a
higher-ranked department. Overall, these results indicate that both mechanisms increased
assortative matching.

Citation metrics may matter more in situations where peers did not have good
information on the quality of a potential hire. We, therefore, explore whether citation
metrics reduced information frictions across geographic and intellectual distance. We
find that citation metrics only impacted moves to higher-ranked departments that were
geographically far but not to departments that were geographically close. Similarly, we
find that citation metrics only impacted moves to higher-ranked departments where the
moving scientist had not been cited before the move. These results suggest that citation
metrics helped overcome information frictions. Reducing these frictions may have enabled
departments to discover scientists in lower-ranked departments, even if they had not
interacted before.

In the second part of the article, we investigate the heterogeneous effects of citation
metrics. First, we show that scientists in higher percentiles of the individual-level citation
distribution, and especially those above the 90th percentile, benefited disproportionately
from the availability of citation metrics. Second, we find that the availability of citation
metrics particularly benefited highly cited academics who were originally placed in lower-
ranked departments. Thus, citation metrics enabled the discovery of these “hidden stars.”
This suggests that the introduction of the SCI helped to overcome misallocation by helping
the highest-cited scientists move to higher-ranked departments. We also investigate
the characteristics of these hidden stars. We provide evidence that these scientists, on
average, obtained their Ph.D. from worse universities and that they were more likely to
be female. Third, we investigate whether minority scientists (female, Jewish, Hispanic
or Asian) differentially benefited from the introduction of the SCI. While we do not find
evidence that minority scientists, on average, benefited more from citation metrics than

majority scientists, we find evidence that among star scientists, minority scientists benefit
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slightly more. Overall, these results suggest that the availability of more “objective’
performance metrics helped highly cited scientists in lower-ranked departments and highly
cited scientists from minority groups.

In the last part of the article, we study the impact of citation metrics on other career
outcomes: promotions and receiving research grants. In particular, we analyze whether
scientists who were assistant or associate professors in 1956 were promoted to full professors
by 1969. The probability of promotion increased by 4.1 percentage points (or 5.8 percent)
for scientists with a 10 percentile higher visible citation rank. In contrast, invisible citations
did not affect promotions. Similarly, we find that scientists with a 10 percentile higher
visible citation rank were 19.0 percent more likely to receive an NSF grant. These results
indicate that citation metrics not only affected assortative matching but also had direct
impacts on the careers of scientists and changed the allocation of resources. Scientists
with many visible citations accrued additional rewards and recognition, suggesting the
presence of Matthew effects (Merton, 1968).

This paper contributes to three different strands of the literature. First, our paper
contributes to the body of literature on the economics of science and the creation of
knowledge. The existing literature has shown that scientists have to process increasing
amounts of knowledge to advance the scientific frontier (Jones, 2009) and that access to
the knowledge frontier is crucial for producing science (laria et al., 2018). Additional
contributions have studied the importance of superstar scientists (Azoulay et al., 2010),
peer-effects and scientific productivity (e.g., Waldinger, 2010, 2012; Borjas and Doran,
2012), and the role of editors (e.g., Card and DellaVigna, 2020). More recently, increased
attention has been paid to inefficiencies in the scientific process such as the Matthew Effect
(Azoulay et al., 2014; Jin et al., 2019), gatekeepers (Azoulay et al., 2019), or discrimination
(e.g., Card et al., 2020, 2022; laria et al., 2022; Koffi, 2021; Hengel, 2022).

Despite all these papers making use of publication and citation data, and a long-
standing sociological debate on this fundamental aspect of modern science (e.g., Lotka,
1926; Merton, 1968; Zuckerman and Merton, 1971; Wouters, 1999a, 2014; Muller and Peres,
2019; Biagioli and Lippman, 2020; Pardo-Guerra, 2022), there is no causal evidence on
how performance metrics affect scientific careers.? Our paper is the first to provide causal
evidence that citation metrics fundamentally impact the organization of science.

Second, our findings contribute to the literature on performance metrics in the labor
market. As highlighted by the theoretical models of Holmstrom and Milgrom (1991) and
Feltham and Xie (1994), the use of performance metrics shapes incentives of agents in the
labor market. The key empirical challenge to estimating the impact of performance metrics
is that, in most cases, it is impossible to measure performance before the introduction of
a specific performance metric. As a result, researchers often lack a valid counterfactual.

This makes empirical evidence on how performance metrics affect the allocation of talent

2Some papers document that citation metrics, such as the h-index or citation counts, are correlated
with career outcomes (e.g., Ellison, 2013; Jensen et al., 2009; Hilmer et al., 2015).



exceedingly rare. A few notable exceptions study the effect of performance metrics in the
teacher labor market (Rockoff et al., 2012) and on first placements of MBA graduates
(Floyd et al., 2022). The unique advantage of our setting is that we observe the information
set available at the time and, importantly, what was not part of that information set.?
Last, we contribute to research on assortative matching in labor markets (e.g., Abowd
et al., 1999; Andrews et al., 2008; Card et al., 2013; Song et al., 2019). We show that

performance metrics can increase assortative matching by lowering information frictions.

I The Science Citation Index: Background and Data

I.A  The Creation of the Science Citation Index

The SCI was the first systematic international and interdisciplinary citation index. During
the 1950s, Eugene Garfield and his newly founded Institute for Scientific Information (ISI)
developed the technology to construct a citation index. By the early 1960s, this endeavor
was supported by grants from the National Institutes of Health and the National Science
Foundation. In November 1963, these efforts came to fruition, and the first edition of
the SCI was published, covering citations in 1961 (Garfield, 1963b, see Figure A.1 for a
picture of the first SCI). The SCI quickly became the “most widely used and authoritative
database of research publications and citations” (Birkle et al., 2020).*

To construct the SCI, Garfield and his team selected 613 citing journals from the
physical and life sciences and collected all citations appearing in articles in these journals
in 1961 (Garfield, 1963a). This enabled them to identify all papers that were cited by
these articles in 1961. The cited papers could have been published in any previous year
(i.e., not only in 1961) and in any journal (i.e., not only in the set of citing journals but in
any journal or book).

This information was stored on punch cards and converted to magnetic tapes, which
were processed by IBM computers (Garfield, 1963b, p. x (sic)). Entries were ordered by
last names and initials of scientists (see Figure A.1). Figure 1 shows the 1961 entry for
the medical scientist Murray Abell. His entry covers five cited papers: a 1950 paper in
Archives of Pathology (vol. 50, p. 1), another 1950 paper in Archives of Pathology (vol.
50, p. 23), a 1956 paper in Archives of Pathology (vol. 61, p. 360), a 1957 paper in the
American Journal of Clinical Pathology (vol. 28, p. 272), and a 1961 paper in Cancer

3Since we measure the information set of contemporaries in the 1960s, our analysis allows us to identify
the effects of revealing new information on labor market outcomes. In this, we add to the literature on
how information disclosure and new information technologies affect market efficiency (e.g., Jensen, 2007;
Koudijs, 2015; Tadelis and Zettelmeyer, 2015; Steinwender, 2018; Bernstein et al., 2023).

4The SCI was revolutionary because it created a novel metric of scientific productivity that individuals
were unable to compile for themselves. No scientist would have had the capacity to count citations to
their own work, because it would have required sifting through hundreds of thousands of potentially citing
articles. In contrast, earlier metrics of scientific productivity, such as publication catalogs, aggregated
information that was already individually available (for example, the Catalogue of Scientific Papers
(Csiszar, 2017)).



(vol. 14, p. 318). Each of these papers was cited at least once in 1961; e.g., the 1956
Archives of Pathology paper was cited by one article in 1961 in the Journal of Pathology
and Bacteriology (vol. 82, p. 281). Overall, these five papers received six citations in 1961.

Figure 1: Entry in the Science Citation Index

ABELL HMR—————————=~#50#ARCH PATHOL--=—=——==- 50 1
EMERY GN CAN J DIOCH 6l 39 977
------------- S0-ARCH PATH==—m====——— §0 23
HRSTKA V¥V ARCH 1 PHAR 61 130 304&
------------- 56~ARCH PATH-——=====—=— 61 360
wILLIAMS GE J PATH BACT 61 B2 2al
———————————e- S7-AMER J CLIN PATH---- 28 272
INKLEY SR ARCH IN MED 61 108 903
LAUFER A PATH MICROB 61 24 T2
61~CANCER==== == wom=aoww-- ia 318

GOSLING JR CANCER 61 14 330

Notes: This figure shows a sample entry of the 1961 volume of the SCI. It lists five cited papers for “Abell
MR”. Murray R. Abell was Professor of Pathology (Medicine) at the University of Michigan. The cited
papers could have been published in any year until 1961 (here: 1950 (twice), 1956, 1957, and 1961). The
five papers are cited by six citing articles. Because this example is from the 1961 volume of the SCI, all
citations are from 1961.

For technical reasons, the SCI did not collect citations for 1962 and 1963. As “[t]he
1961 SCI was the result of an experimental research program,” its preparation took more
than two years (Garfield, 1965). After releasing the 1961 SCI in November 1963, the ISI
moved on to preparing the 1964 SCI.® From then on, the SCI was published quarterly.
The set of indexed citing journals quickly expanded from 613 in 1961 to 2,180 in 1969.

The SCI was an immediate success. By the late 1960s, every major university had a
subscription (Garfield, 1972, p. 4). For example, in 1965 chemists at Ohio State University
lobbied the library administration to subscribe to a second copy of the SCI, in addition to
the copy that was already available in the medical library (see Appendix Figure A.3).°

I.B Data
Reconstructing SCI Coverage from the Web of Science

For contemporaries, citations were only visible if they came from citing articles in journals
that were indexed by the SCI. This means that only an incomplete set of citations was
visible at the time. Citations before the SCI’s introduction in 1961, as well as those from
1962 and 1963, and from journals that were not indexed by the SCI remained invisible.
In the 1970s and 1980s, the SCI was backward expanded to cover additional years and

journals, and later became part of the Web of Science. As a result, the Web of Science

5The 1962 and 1963 SCIs were released only in 1972 (Garfield, 1972). For this reason, we measure
outcomes in 1969 and, hence, before the ISI had begun to fill in gaps in coverage.

5By 1966, the SCI was not only available as printed volumes, but could also be purchased on magnetic
tapes. The magnetic tapes provided the raw data for constructing citation counts and for conducting
quantitative citation analyses (Garfield, 1966). Furthermore, the ISI published five-year cumulations of
the SCI. For example, the 1965-1969 compilation included all citations between 1965 and 1969 (Garfield,
1971).



covers both citations that were visible to contemporaries and citations that were invisible
at the time, but became available during the backward expansions.

We reconstruct the sets of citations that were visible and invisible to contemporaries.
For this purpose, we hand-collect yearly lists of citing journals from the printed historical
SCI volumes. We digitize these lists and hand-link them to the Web of Science. Appendix
Figure A.2 shows a sample journal list. Using this linking procedure, we can identify which

citations were part of the information set of the 1960s, and which ones were not.

Faculty Rosters

To study how the introduction of citation metrics affects the careers of academics, we
use data containing faculty rosters for nearly all universities in the United States from
the World of Academia Database (see laria et al., 2022). The data contain almost
comprehensive cross-sections of all U.S. academics for the years 1956 and 1969. Because
the SCI only counted citations for the natural and biomedical sciences, we focus on all
academics who worked in either biology, biochemistry, chemistry, physics, mathematics, or
medicine. For the period of our analysis, the database provides the most comprehensive
data on academics in the United States (see laria et al. (2022) for details). For the 1969
cross-section, the data contain 27,315 scientists at 1,477 departments in 384 universities
(Table 1, Panel B).

The World of Academia Database has two unique advantages for our purpose. First,
it enables us to identify the department (e.g., physics at Berkeley) of each academic.
Second, it contains complete faculty rosters, which allows us to observe both academics
who received citations and, importantly, academics who did not receive any citations. This
enables us to construct comprehensive individual and department rankings based on all

academics and not only based on those who published and were cited.

Linking Scientists with Publications and Citations

To count scientists’ publications and citations, we link the World of Academia Database
with publication and citation data from the Web of Science. We use the cascading linking
algorithm developed in Iaria et al. (2022) (see Appendix B.1.1 for details).

For the 1969 cohort of scientists, we link their publications and citations from 1956
to 1969. This enables us to measure the number of papers that each scientist published
in this period and to count the citations that these papers received from the time they
were published until 1969. Importantly, for our identification strategy, we observe the
complete citation network and thus the exact journal in which a certain paper was cited.
This allows us to measure whether the citations were covered in the SCI and were thus
visible to contemporaries.

The average scientist in our data published 8.75 papers between 1956 and 1969 (Table 1,

Panel A). These papers received 47 citations that were visible to contemporaries and 19



citations that were invisible to contemporaries but can be observed today.” As has been
documented by a large literature in the sociology of science, citations of academics are
highly skewed (e.g., Lotka, 1926). The most highly cited scientists in our data received
more than 3,000 visible and more than 2,000 invisible citations between 1956 and 1969.

Table 1: Descriptive Statistics

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max
Publications 8.75 16.65 0 405
Visible Citations 46.99 128.05 0 3,346
Invisible Citations 18.93 57.95 0 2,010
Full Professor Share  0.40 0.49
Female Share 0.10 0.30

Panel B: Number of Observations

Dataset includes: Observations
Citations 1,800,669
Publications 239,124
Scientists 27,315
Departments 1,477
Universities 384

Notes: Panel A reports summary statistics at the scientist-level for the cross-section of
scientists observed in 1969. Publications are the number of papers a scientist published
between 1956 and 1969; visible citations are the number of citations these papers re-
ceived between 1956 and 1969 that were visible in the SCI; invisible citations are the
number of citations these papers received between 1956 and 1969 that were not visible
in the SCI. Panel B reports the number of observations at the citation, publication,
scientist, department, and university level.

Constructing Scientist Rankings

Using our scientist-publication-citation-linked data, we can construct rankings based on
citations and publications. Within each subject, we rank scientists according to their
citation (or publication) counts between 1956 and 1969. We then calculate each scientist’s
percentile rank in the subject-specific distribution of citations (or publications), assigning
100 to the best and 1 to the worst scientist. This variable transformation allows us
to compare the scientists’ relative positions in the citation distributions, even if these
distributions differ across subjects. For example, the median biologist received 2 citations,
while the median chemist received 9 citations. If percentiles cannot be uniquely assigned
because too many scientists have the same number of citations or publications, we assign
the mid-point of the corresponding percentiles.® This is particularly important for scientists
with zero citations. Alternative assignments of percentile ranks to scientists with zero

citations do not affect our findings (see Appendix C.2.3).

"We show below that the different distributions of visible and invisible citations do not drive our
results.

8For example, in physics 30.37% of observations have zero citations. For the main results, we assign
the mid-point between the 1st percentile and the 31st percentile, i.e., a percentile rank of 15.5, to each of
these observations.



Constructing Department Rankings

Our data also enable us to construct the most comprehensive department rankings for this
time period. These are the first rankings for this period that are based on scientific output,
as opposed to reputational surveys. In addition, our rankings cover a much larger number
of departments than previously available survey-based rankings. In fact, the practice
of ranking departments by their research output only developed as a result of citation
indexing.

We rank all 1,477 departments in 384 universities on the basis of the average total
citations received by scientists in each department. As outlined above, the rankings avoid
systematic error because the World of Academia database also lists all scientists who have
not published and/or were not cited in our study period. In our main department ranking,
we construct the leave-out mean of the number of citations received by scientists in a given
department, i.e., the average citation count of scientist i’s colleagues. We then assign
the percentile rank in the subject-specific distribution of leave-out mean citation counts,
assigning 100 to the best and 1 to the worst department. We use the percentile rank
because it allows us to compare the relative position of departments in different subjects
(physics, chemistry, and so on), which have different numbers of departments, scientists,
and average citations per scientist.

In robustness checks, we show that our findings are robust to using several alternative
department rankings. First, we construct analogous department percentile ranks based on
publications. Second, we construct department percentile ranks using reputation-based
rankings from Roose and Andersen (1970) and Cartter (1966). As highlighted above, the
reputation-based rankings cover far fewer universities.” In Appendix B.2, we list the top

20 departments in each subject, as measured by the various rankings.

I.C How Was the SCI Used in Hiring and Promotions?

While the SCI was predominantly designed to facilitate literature research, it was immedi-

ately used to evaluate scientists. For example, Eugene Garfield remembered:

“The SCI’s success did not stem from its primary function as a search en-

2

gine, but from its use as an instrument for measuring scientific productivity.

(Garfield, 2007, p. 65)
The eminent biologist Richard Dawkins described the SCI as a publication that:

“is intended as an aid to tracking down the literature on a given topic. Univer-

sity appointments committees have picked up the habit of using it as a rough

9The Cartter ranking contains 106 universities, and the Roose-Andersen ranking contains 130, while
our baseline ranking contains 384 universities. The alternative rankings strongly correlate with our main
citation-based ranking. The correlation between the Cartter ranking and our citation-based ranking is
0.68, while the correlation between the Roose-Andersen ranking and our citation-based ranking is 0.70.

10



and ready (too rough and ready) way of comparing the scientific achievements
of applicants for jobs.” (Dawkins, 1986, p. 427)

The SCI made scientists’ citations visible and readily accessible for the first time. Because
the SCI was organized by cited authors, it was easy to measure and compare the citation
counts of scientists. Figure 2 shows one such comparison for two scientists working at
Caltech. The box on the left shows citations of the physicist Charles Archambeau. The
box on the right shows the citations of the 1965 physics Nobel laureate Richard Feynman.
As one contemporary remarked, “[a]n early form of research evaluation of individuals made

use of a ruler to measure column inches of citations!” (Birkle et al., 2020, p. 364).

Figure 2: Comparison of SCI Entries

Notes: This figure compares the entries in the 1965-1969 cumulation of the SCI (Garfield, 1971) for two
physicists at Caltech: Charles Archambeau on the left, and Nobel laureate Richard Feynman on the right.

Very quickly, scientists, funding bodies, and university administrators started to use
citation counts in hiring, promotion, and funding decisions. Some universities even made
citations a mandatory metric in the evaluation of applicants’ portfolios (Wade, 1975, p.
429). The importance of newly available citation metrics is exemplified in the court case
Johnson v. University of Pittsburgh.'’ In 1973, Sharon Johnson sued the biochemistry
department at the University of Pittsburgh for sex discrimination. Her legal case argued
that she was overlooked for tenure even though her papers had received more citations (as

measured in the SCI) than those of two recently tenured male colleagues.

The SCI’s Impact on Assortative Matching: Suggestive Evidence

We first provide suggestive evidence of the impact of the citation metrics on the assortative
matching of academics and departments. If departments began to use the SCI to evaluate
scientists, we would expect that the correlation between a scientist’s citations and their

department rank increased after the introduction of the SCI. We find that the correlation

0Dy, Sharon Johnson v. The University of Pittsburgh, W.Da. PA., 1977,
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between a scientist’s individual citation rank and their department rank increased by 61%
between 1956 and 1969 (Figure 3, panels (a) and (b)). In contrast, the correlation between
the individual publication rank and the department rank decreased by 46% (Figure 3,
panels (¢) and (d)).

Figure 3: Assortative Matching Before and After Citation Metrics
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(a) 1956 (b) 1969

60 60

Slope: 0.30

4
% 55 55
~
g
"é 50 50
g Slope: 0.19
&
A 45 45

40 40

0 20 40 60 80 100 0 20 40 60 80 100
Individual Citation Rank
Assortative Matching by Publications
(c) 1956 (d) 1969

65 65

60 60
4
g
<
&
= 55 55
5]
g
b= 50 50
g Slope: 0.21 Slope: 0.11

45 45

40 40

0 20 40 60 80 100 0 20 40 60 80 100

Individual Publication Rank

Notes: Panels (a) and (b) show the correlation of scientists’ citation rank and their department rank
for two cross-sections: 1956 and 1969. Panel (a) shows a binned scatter plot for 1956 and, thus, before
the introduction of the SCI. While we can now measure these citations, they were not observable at the
time. Panel (b) shows a binned scatter plot for 1969 and, thus, after the introduction of the SCI. The
regression coefficient in both panels is conditional on an individual’s publication rank. The p-value of
the test that the slope coefficients in panels (a) and (b) are equal is 0.008. Panels (c¢) and (d) show the
correlation between scientists’ publication rank and their department rank. Publications were observable
to contemporaries in both 1956 and 1969. The regression coefficient in both panels is conditional on an
individual’s citation rank. The p-value of the test that the slope coefficients in panels (c¢) and (d) are
equal is 0.007.

This evidence is in line with the hypothesis that the introduction of citation metrics

increased the reliance of hiring decisions on citations, and decreased the reliance on
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other observable characteristics such as publications. However, the increasing correlation
between scientists’ citation rank and their department rank may have been caused by
other factors. For example, the increasing importance of expensive research labs or federal
research funding (e.g., Kantor and Whalley, 2022) could disproportionately favor leading
departments and allow them to attract highly cited scientists. Similarly, increases in team
production (e.g., Wuchty et al., 2007; Jones, 2009) may have spurred within-department
collaborations and, hence, may have made department quality more important for scientists’
citations. To overcome these challenges, we introduce a novel identification strategy that

allows us to isolate the causal effect of citation metrics on assortative matching in academia.

II The Effect of Citation Metrics on Assortative Match-
ing
II.A  Empirical Strategy

We identify the causal effect of citation metrics by comparing the effect of citations that
were wvisible in the SCI to the effect of citations that remained inwvisible. For technical
reasons, the SCI only covered citations from citing articles in a subset of journals and
years. Hence, only citations from citing articles in this subset were visible to the scientific
community. In contrast, other citations remained invisible because they were not covered
in the SCI. Importantly, the cited papers could have been published in any journal and in
any previous year. Therefore, scientists’ visible citation counts were not determined by
the journals in which their papers were published but only by the journals in which their
papers were cited.

As described above, the first volume of the SCI covered citations from 1961 in any
of the 613 citing journals. As a result, all 1961 citations in those 613 journals became
visible in the SCI, while citations before 1961 and in other journals remained invisible.
Due to limited computing power, the collection of citation data was interrupted in 1962
and 1963. By 1964, data collection resumed. The set of indexed citing journals quickly
expanded from 613 in 1961 to 2,180 in 1969. As a result, the visibility of citations was
affected by two sources of variation: first, in which year a paper was cited, and second, in
which journal it was cited.!!

Our data enable us to reconstruct which citations were part of the information set
of the 1960s, i.e., we measure citations that were wvisible in the SCI. Crucially, we can
also reconstruct which citations were not part of that information set, i.e., citations that
were tnvisible. Invisible citations can be measured today because citation databases were

expanded to include citations for additional years and for a larger set of citing journals.

HBelow, we provide evidence that the quality of citing journals or differences in the timing of citations
does not drive our findings.
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Table 2 illustrates the identifying variation for a hypothetical scientist. It reports
citations to the scientist’s papers, which were published in any journal and in any year.
These papers were cited in articles from journals A, B, and C between 1956 and 1969.
Journal A was in the initial set of 613 citing journals indexed by the SCI in 1961. Journal
B was added to the SCI in 1966, whereas journal C was not indexed in the 1960s. The
dark blue cells indicate citations that were visible to contemporaries because the SCI
collected citations for these years and citing journals. The light blue cells indicate citations
that were invisible because the SCI did not collect data for these years and citing journals.
In other words, citations in dark blue cells were part of contemporaries’ information set,

while citations in light blue cells were not.

Table 2: Identifying Variation for Specification 1

Citations in Journal A | Citations in Journal B | Citations in Journal C

1956
1957 1
1958
1959 1 1
1960

1962 1
1963 1

Notes: This table reports citations of a hypothetical scientist’s papers. Numbers in dark blue cells show
citations that were visible in the SCI because the citation occurred in a journal and year (1961, or 1964-69)
that was covered by the SCI. Numbers in light blue cells show citations that were invisible in the SCI, but
are observable today.

In the example, the hypothetical scientist’s papers were cited in articles published in
journal A in 1959, in 1961, in 1963, and twice in 1967. The citations in 1959 and 1963
were invisible because the SCI did not exist for those years. In contrast, the citations
in 1961 and 1967 were visible in the SCI. Similarly, the scientist’s papers were cited in
articles in journal B in 1957, 1961, 1965, and three times in 1966. Because journal B was
added to the SCI only in 1966, the citations in 1957, 1961, and 1964 were invisible. In
contrast, the three citations in 1966 were visible. Finally, the scientist’s papers were cited
in articles in journal C in 1959, 1961, and 1969. As journal C was not indexed in our
study period, all of these citations were invisible to contemporaries.

Hence, if contemporaries had looked up the scientist’s total citations in the SCI in
1969, they would have observed six citations, i.e., the scientist had six visible citations. In
addition, the scientist had eight citations that were invisible at the time. Using modern

citation data, we can observe both visible and invisible citations. For each scientist i, we
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separately count the number of visible and invisible citations between 1956 and 1969 to
1’s papers published between 1956 and 1969.

II.B Specification 1: Visible vs. Invisible Citations

Our identification strategy exploits the differential visibility of scientists’ citations. If the
very measurement of citations affects the assortativeness of the match between academics
and universities, visible citations should be more predictive of career outcomes than
invisible ones.'? The identifying assumption underlying this new empirical strategy is that
the effect of visible and invisible citations would be the same if both had been covered in
the SCI. Given the arbitrary timing of the introduction of the SCI and the lack of coverage
for the years 1962 and 1963, this seems plausible. Nonetheless, there may be concerns that
any effect might be driven by differences in the quality of the citing journals or the timing
of citations, i.e., by the two sources of variation in the visibility of citations. We address

these concerns with alternative specifications outlined below.
We estimate the following regression:

Dep. Rank; = § - Visible Citations; + 0 - Invisible Citations; (1)
+ 7 - Publications; + Subject FE + ¢;

where Dep. Rank; is the department rank of scientist ¢ in 1969, where 100 is the best

and 1 the worst department.'® Visible Clitations; measure scientist i’s visible citations.
Invisible Citations; measure scientist ¢’s invisible citations. In the baseline specification,
we measure citations as the percentiles in the distributions of visible and invisible cita-
tions.!* Publications; flexibly control for scientists ¢’s publications. Subject F'E control for
differences between academic subjects. To account for potential correlations of regression
residuals in a certain department, e.g., in chemistry at Berkeley, we cluster all standard
errors at the department-level.

To study how citation metrics affect assortative matching, we compare the magnitudes
of the estimated coefficients § and 6. If the visibility of citations in the SCI increased
the assortativeness of the match between scientists and departments, we would expect
that 0 > 6. For example, the difference between o and 6 captures whether citations that
occurred in 1961 instead of 1962 had a larger impact on the match between scientists and

departments. Note that we would not expect 6 to be zero because, even in the absence

PTnvisible citations may still correlate with outcomes, because scientists have always had a rough idea
of the quality, and thus citation potential, of their peers’ papers.

13In the main specification, we use the department ranking based on the leave-out mean of citations. All
results are robust to using different measures of the department rank, e.g., based on citations, publications,
or alternative department rankings based on contemporaneous reputation-based surveys (Table C.1 and
Table C.2).

14We explore alternative transformations of citation counts in Table C.3, e.g., standardizing citation
counts or using the inverse hyperbolic sine of citations.
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of the SCI, scientists will have an approximate idea about the importance and quality of

other scientists’ papers.

Table 3: Citations and Assortative Matching

Dependent Variable: Department Rank

1 2) ®3) (4) ©)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.299 0.320 0.280 0.247 0.237
(0.034)  (0.031) (0.035) (0.035) (0.035)
Invisible Citations 0.103 0.068 0.062 0.061 0.060
(0.023)  (0.020) (0.021) (0.023) (0.024)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 <0.001 <0.001
R? 0.138 0.140 0.153 0.232 0.261

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.305 0.327 0.284 0.252 0.243
(0.035) (0.032) (0.036) (0.035) (0.036)
Pseudo-Visible Citations 0.033 0.012 0.013 0.028 0.022
(0.021)  (0.020) (0.020) (0.022) (0.023)
Invisible Citations (SCI years) 0.030 0.029 0.030 0.020 0.023
(0.014)  (0.014) (0.014) (0.014) (0.014)
Invisible Citations (non-SCI years) 0.057 0.044 0.037 0.025 0.029
(0.017)  (0.016) (0.016) (0.016) (0.017)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (SCI years)) < 0.001 <0.001 <0.001 <0.001 < 0.001
P-value (Visible = Invisible (non-SCI years)) < 0.001 <0.001 <0.001 <0.001 <0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.451 0.551 0.676 0.941 0.956
R? 0.138  0.141  0.154 0232  0.261
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 27315 27,315 27315 27,315 27,315
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1) in the first panel and of Equation (21 in the second panel. The dependent
variable is the department rank in 1969, based on the leave-out mean of citations in the department of scientist ¢ The explanatory
variable Visible Citations measures scientist #’s individual rank in the distribution of visible citations. Invisible Citations measures
scientist 4’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist ¢’s individual rank in
the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e.,
1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist ¢’s individual rank in the distribution of invisible citations
in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist 4’s individual rank in the distribution of
invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-
1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

We report estimates of Equation (1) in the first panel of Table 3. In column (1), we
report a specification that controls for subject fixed effects. The coefficient for visible
citations is around three times larger than the coefficient for invisible citations. Scientists
with a 10 percentiles higher visible citation count were, on average, placed at a 3.0
percentiles higher-ranked department in 1969. For example, a chemist would be placed at
Harvard or Stanford as opposed to Northwestern University or the University of Southern
California. In contrast, scientists with a 10 percentiles higher invisible citation count were,

on average, only placed at a 1.0 percentiles higher-ranked department.®> We also report

15 As discussed above, it is not surprising that invisible citations are positively correlated with the
department rank because they proxy for wider recognition by the scientific community.
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the p-value of a two-sided t-test for the equality of the two citation coefficients. We reject
the equality of the two coefficients at the 0.1%-level.

To rule out that these differences could potentially be explained by scientists’ publica-
tion records, we include fine-grained controls for publications in columns (2)-(5). In column
(2), we show that the results are robust to controlling for the number of publications by
year, i.e., controlling separately for the number of publications in 1956, 1957, and so on.'6
One might be concerned that differences in publication and citation patterns across the
sciences could explain our findings. For example, mathematicians publish fewer papers
and receive fewer citations than chemists or medical researchers. To address this concern,
we show that the results are robust to separately controlling for the number of publications
by year and subject (column (3)).

Naturally, not only the number of publications but also the journal in which a paper
was published may be correlated with citation counts and thus might bias our estimates.
To overcome this challenge, we additionally control for the number of publications in each
individual journal. That is, we add a variable that counts the number of papers in Science,
another variable that counts the number of papers in Nature, and so on. In total, we
add 1,745 variables that control for the number of publications in each journal (column
(4)). We also allow the effect of these controls to differ by subject, so that a publication
in Science may have a different effect on the career of a physicist than on the career
of a chemist (column (5)). The results are robust to the inclusion of these fine-grained
controls for scientists’ publication records. In fact, the difference in the impact of visible
and invisible citations increases with the inclusion of additional controls. With all controls
(column (5)), visible citations have a four times larger effect on the department rank than
invisible citations. Appendix Figure C.1 illustrates these results graphically.

We show that these findings are robust to using alternative ways of ranking departments
(Appendix C.2.1), to using alternative transformations of individual citation counts (Ap-

pendix C.2.2 and C.2.3), and to imposing additional sample restrictions (Appendix C.2.4).

Alternative Explanation 1: Quality of Citing Journals

Despite the somewhat arbitrary nature of the SCI coverage, the results would be biased
if the visibility of citations in the SCI were correlated with other characteristics that
impacted a scientist’s department rank in 1969.

The first concern is that visible citations may come from citing articles in higher
quality journals (e.g., Nature or Science) and therefore have a larger impact on a scientist’s
career. It is important to note that this concern is somewhat mitigated because it was
difficult to assess journal quality before the introduction of the SCI. Some of the citing

journals initially indexed in the SCI turned out to be of relatively lower quality. Similarly,

16Since the number of scientists’ publications takes many fewer values than the number of citations (see
Table 1), especially when measuring publications separately by years (columns (2)-(5) in Table 3) and
journals (columns (4)-(5) in Table 3), we do not use the percentile rank transformation of publications.
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many journals that were, in fact, of high quality were not indexed during the first years of
the SCI.

While it was not possible to quantitatively measure journal quality at the time, we can
retrospectively compute measures of the quality of the citing journal and thereby assess
whether visible citations came from better journals. For this test, we compute the impact
factors for all citing journals in the pre-SCI period.!” Journals which were indexed in the
1961 SCI had an average impact factor of 0.83, while journals which were not indexed had
an average impact factor of 0.86 (p-value of test of equal means: 0.618). We also plot the
distributions of the average impact factors for both types of journal in Figure 4. This
analysis indicates that journals indexed in the 1961 volume of the SCI were not of higher

quality than journals that were not indexed.

Figure 4: Quality of Journals Indexed and Not Indexed in SCI
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Notes: The figure shows histograms of impact factors for two sets of journals: journals indexed in the SCI
in 1961 (orange) and journals not indexed in the SCI in 1961 (blue). For each journal, we average the
impact factors over the pre-period (1956-1963).

To provide additional evidence that differences in the quality of citing journals are not
driving the results, we estimate regressions that only consider citations from a fixed set of
journals. For this test, we only rely on over-time variation in the visibility of citations.
This allows us to abstract from potential differences in journal quality. In particular, we
estimate regressions that only use visible and invisible citations from the set of journals
that were included in the first edition of the SCI in 1961 (i.e., only using over-time variation

in citations from type A journals in Table 2).18

1"Because the 1961 volume of the SCI was published in November 1963, we define the pre-SCI period
as 1956-1963. The impact factor is calculated as the average number of citations in year ¢ to articles
published in that journal in the years t — 1 and ¢ — 2.

18We visualize the underlying variation of this robustness check in panel (b) of Appendix Figure C.2.
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For example, the test compares scientists who were cited in Nature in 1961 and
therefore these citations were visible in the SCI, to scientists who were cited in Nature in
1962 and therefore these citations were invisible. The hypothetical scientist presented in
Table 2 would have three visible citations: one in 1961 and two in 1967; and two invisible
citations: one in 1959 and one in 1963. For this test, we do not consider citations in type
B or C journals, i.e., journals not indexed in the first SCI in 1961. The results that use
only citations from type A citing journals are almost identical to the main results (see
Appendix Table C.6), indicating that differences in the quality of citing journals do not

drive our findings.

Alternative Explanation 2: Timing of Citations

The second concern stems from the differential timing of visible and invisible citations. As
the SCI was introduced in 1961, visible citations, on average, occurred in later years than
invisible ones. If more recent citations had more predictive power for career outcomes in
1969, the larger effect of visible citations may be spurious.

We address this concern by fixing the timing of citations and exclusively relying on
across-journal variation in visibility. In particular, we estimate regressions that only use
visible and invisible citations from years in which the SCI was available (i.e., 1961 and
1964-1969). This exercise compares scientists with the same publication record who were
cited in similar years but in different journals, only some of which were covered in the
SCIL.1

For our hypothetical scientist presented in Table 2, this test considers six visible
citations: one from journal A in 1961, two from journal A in 1967, and three from journal
B in 1966. It also considers three invisible citations: one each from journal B in 1961 and
1965, and one from journal C in 1969.2"

The results that use only citations from years in which the SCI was published are
very similar to the main results (Appendix Table C.7). The point estimates are almost
identical, and the p-values for the difference in coefficients remain below the 0.1%-level.
These results strongly suggest that the differential timing of visible and invisible citations

does not drive our findings.?!

19 As outlined above, in the early years, limited funding and computing power prevented the Institute
for Scientific Information from covering a large number of journals in the SCI (Garfield, 1963b, p. xvii).
As a result, citations in many reputable journals remained invisible.

20See also panel (c) of Appendix Figure C.2.

21 As more journals were indexed in later years, even in this test, visible citations may, on average,
come from later years. We address this concern by restricting the years for which we measure visible and
invisible citations to even smaller windows (see Appendix Table C.8).
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II.C Specification 2: Visible vs. Pseudo-Visible vs. Invisible

Citations

The quality of citing journals and the timing of citations might interact to make visible
citations more predictive for assortative matching. To address such concerns, we introduce
a second specification, which includes a placebo test that compares the predictiveness of
different types of invisible citations. For this specification, we partition the citation space
into four mutually exclusive sets depending on where and when a scientist was cited (see
Table 4):

1. Visible citations: citations from journals that were indexed in the SCI in years when
the SCI was published (1961 and 1964-1969),

2. Pseudo-visible citations: citations from journals that were indexed in the SCI in
1961 but from years when the SCI was not published (1956-1960 and 1962-1963),

3. Invisible citations (SCI years): citations from journals that were not indexed in the
SCI in years when the SCI was published (1961 and 1964-1969),

4. Invisible citations (non-SCI years): citations from journals that were not indexed in
the SCI in 1961 and from years when the SCI was not published (1956-1960 and
1962-1963).

Table 4: Identifying Variation for Specification 2

Citations in Journal A Citations in Journal B Citations in Journal C

1

Notes: This table reports citations to a hypothetical scientist’s papers. We partition the citation space
along two dimensions: (i) years covered by the SCI (blue) or not (red) and (ii) journals covered by the
SCI (dark) or not (light). Dark blue cells show citations that were visible in the SCI. Dark red cells show
pseudo-visible citations, i.e., citations that were invisible (because they came from years not covered by
the SCI) but would have been visible had the SCI been published for those years. Light blue cells show
invisible citations for years in which the SCI was published, i.e., citations that came from journals not
covered by the SCI in years when the SCI was published. Light red cells show invisible citations for years
in which the SCI was not published, i.e., citations that came from journals not covered by the SCI in
years when the SCI was not published.
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For our hypothetical scientist, this test considers six visible citations (dark blue in Table 4).
It also considers two pseudo-visible citations (dark red). Furthermore, it considers three
invisible citations in SCI years (light blue). Finally, it considers three invisible citations in

non-SCI years (light red).

For each scientist, we count the number of citations in these four sets and construct
the corresponding percentile ranks. Using these measures, we estimate the following
regression:

Dep. Rank; = 61 - Visible Clitations; + d2 - Pseudo-Visible Citations;
+ 01 - Invisible Citations (SCI years); + 0o - Invisible Citations (non-SCI years); (2)
+ 7 - Publications; + Subject FE + €;

As pseudo-visible citations were not visible to contemporaries, we would expect them
to matter similarly to the invisible ones, i.e., we would expect §; > 0, = 61 =~ 65. Note
that the comparison between visible and pseudo-visible citations allows us to estimate the
causal effect of citation metrics even if journals indexed in the SCI differed in quality from
journals not indexed in the SCI.

We find that the coefficient on visible citations (Table 3, Specification 2) is almost
identical to the baseline specification (Table 3, Specification 1). Strikingly, the coefficient
on pseudo-visible citations is a lot smaller and very similar to the coefficients on invisible
citations. This indicates that citations in journals that were indexed by the SCI only had
a differential impact in years in which the SCI was actually available. The coefficients
on invisible citations from SCI years and non-SCI years are also very similar and not
distinguishable from the coefficient on pseudo-visible citations (p-value of test do = 6y = 0s:
0.941). Figure 5 visualizes the results of Specification 2. This confirms that citations from
journals indexed by the SCI only mattered in years in which the SCI was available. In
addition, in years when the SCI was not available, citations from journals indexed by the

SCI (pseudo-visible citations) did not differ from other invisible citations.

II.D Mechanisms

In the next subsection, we shed light on two potential mechanisms that could underlie
the increased assortative matching. First, scientists with few citations may have dispro-
portionately left academia. Second, highly cited scientists may have moved up to better
departments. We investigate these explanations in turn by comparing the impact of visible

and invisible citations on these individual-level career outcomes.

Effect on Leaving Academia

We start by estimating the impact of citation metrics on the probability of leaving academia.
For these regressions, we study scientists who we observe in the 1956 cross-section of

academics. We exclude scientists who were already full professors in 1956 to avoid picking
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Figure 5: Assortative Matching, Specification 2
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Notes: The figure illustrates the results from Equation (2), see Table 3, Specification 2. Panels (a) to
(d) report bin-scatter plots illustrating the relationship between citation ranks and the department rank.
Panel (e) plots the coefficients and 95 percent confidence intervals.

up retirements.?> We then check whether these scientists had left academia by 1969. We

estimate the following regressions:

22The results are very similar if we include full professors in this analysis.
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Specification 1:

1[Leaving Academial; = 0 - Visible Citations; + 0 - Invisible Citations; (3)
+ 7 - Publications; + Subject FE + ¢;

Specification 2:

1[Leaving Academial; = 61 - Visible Citations; + do - Pseudo-Visible Citations; (4)
+ 01 - Invisible Citations (SCI years); + 02 - Invisible Citations (non-SCI years);
+ 7 - Publications; + Subject FE + ¢;

where 1[Leaving Academial; is an indicator variable equal to one if a scientist left academia
between 1956 and 1969. The remaining variable definitions are identical to the definitions

in Equations (1) and (2).

Table 5: Mechanism 1: Leaving Academia

Dependent Variable: Leaving Academia

(1 2 3) 4) (5)

Specification 1: Visible vs. Invisible Citations

Citations Visible -0.0038  -0.0042 -0.0038 -0.0034 -0.0033
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Citations Invisible 0.0001  0.0008  0.0009  0.0010  0.0009
(0.0004) (0.0004) (0.0004) (0.0004) (0.0005)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 <0.001 <0.001
R? 0.088 0.092 0.105 0.244 0.297

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations -0.0037  -0.0039  -0.0035 -0.0031 -0.0031
(0.0004) (0.0005) (0.0005) (0.0005) (0.0005)
Pseudo-Visible Citations 0.0002  0.0006  0.0006  0.0004  0.0004
(0.0005) (0.0005) (0.0005) (0.0006) (0.0006)
Invisible Citations (SCI years) -0.0002  -0.0000  0.0000  -0.0000 -0.0001
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)
Invisible Citations (non-SCI years) -0.0000  0.0001  0.0001  0.0002  0.0005
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 0.001 0.001
P-value (Visible = Invisible (SCI years)) <0.001 <0.0001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (non-SCI years)) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.718 0.510 0.579 0.810 0.521
R? 0.089 0.092 0.105 0.244 0.297
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 12,368 12,368 12,368 12,368 12,368
Dependent Variable Mean 0.691 0.691 0.691 0.691 0.691

Notes: The table reports the estimates of Equation (31 in the first panel and of Equation (4 in the second panel. The dependent variable
is an indicator equal to one if scientist i left academia, i.e., ¢ was observed in 1956, but not in 1969. These regressions use the 1956
cross-section of scientists who were not full professors. The explanatory variable Visible Citations measures scientist i’s individual rank in
the distribution of visible citations. Invisible Citations measures scientist ¢’s individual rank in the distribution of invisible citations.
Pseudo-Visible Citations measures scientist ¢’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed
in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist
i’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years)
measures scientist ¢’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not indexed in the
SCT in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the
best and 1 the worst scientist. Publications by Year separately measure the number of scientist i’s publications in each year between 1956
and 1969. Publications by Journal separately measure the number of scientist i’s publications in each journal (e.g., Nature). Standard
errors are clustered at the department level.
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Figure 6: Leaving Academia, Specification 2
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Notes: The figure plots the coefficients and 95 percent confidence intervals from Equation (4), see Table 5,
Specification 2.

The probability of leaving academia was lower for academics with a higher visible
citation count (Table 5, Specification 1). Scientists with a 10 percentile higher visible
citation count were around 3.4 percentage points (or 5.0 percent relative to the mean)
less likely to leave academia between 1956 and 1969. Strikingly, invisible citations did not
have a significant impact on the probability of leaving academia. The p-values for the
tests that the coefficients on visible and invisible citations are equal are lower than 0.001.
The estimates from Specification 2 confirm these findings (Table 5, Specification 2; and
Figure 6). These results suggest that the increased assortative matching of academics was,

in part, driven by scientists with fewer visible citations leaving academia.

Effect on Moving to a Higher-Ranked Department

As a second mechanism for increased assortative matching, we investigate the moves of
scientists between departments. More specifically, we estimate variants of Equation (3)
and Equation (4) in which we replace the dependent variable with an indicator that equals
one if a scientist moved to a higher-ranked department between 1956 and 1969.

We find that scientists with a 10 percentile higher visible citation count were around 0.8
percentage points more likely to move to a higher-ranked department (Table 6, Specification
1). This relatively small point estimate nevertheless represents a 17.5 percent increase
relative to the mean. Invisible citations did not affect the probability of moving to a
higher-ranked department. The results are very similar if we estimate Specification 2
(Table 6, Specification 2; and Figure 7).

Only 4.6 percent of academics managed to move to a higher-ranked department
between 1956 and 1969. Hence, some of the differences between the coefficients on visible
and (the various) invisible citations are not significant at conventional levels. However,
the results suggest that assortative matching also increased because scientists with many

visible citations moved to higher-ranked departments.
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Table 6: Mechanism 2: Moving to Higher-Ranked Department

Dep. Var.: Moving to Higher-Ranked Department
) 2) ®3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0008  0.0007  0.0006  0.0008  0.0007
(0.0003)  (0.0003) (0.0003) (0.0003) (0.0004)
Invisible Citations -0.0001  0.0001  0.0000 -0.0003 -0.0003
(0.0003) (0.0003) (0.0003) (0.0003) (0.0004)
P-value (Visible = Invisible) 0.101 0.254 0.238 0.078 0.154
R? 0.014 0.018 0.037 0.336 0.405

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0008  0.0007  0.0006  0.0007  0.0006
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Pseudo-Visible Citations -0.0002  -0.0001  -0.0002 -0.0004 -0.0003
(0.0002) (0.0002) (0.0002) (0.0003) (0.0004)
Invisible Citations (SCI years) 0.0002  0.0002  0.0002  0.0001  0.0001
(0.0002) (0.0002) (0.0002) (0.0003) (0.0003)
Invisible Citations (non-SCI years) -0.0000  0.0000  0.0001  0.0001  0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0003)
P-value (Visible = Pseudo-Visible) 0.027 0.076 0.076 0.059 0.147
P-value (Visible = Invisible (SCI years)) 0.113 0.189 0.252 0.271 0.358
P-value (Visible = Invisible (non-SCI years)) 0.015 0.050 0.102 0.134 0.281
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.498 0.625 0.519 0.389 0.564
R? 0.014 0.018 0.037 0.336 0.405
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 6,478 6,478 6,478 6,478 6,478
Dependent Variable Mean 0.046 0.046 0.046 0.046 0.046

Notes: The table reports the estimates of variants of Equations (31 and (41 with a different dependent variable: an indicator equal to one
if scientist ¢ moved to a higher-ranked department between 1956 and 1969. These regressions use the sample of scientists observed in 1956
and 1969. The explanatory variable Visible Citations measures scientist ¢’s individual rank in the distribution of visible citations. Invisible
Clitations measures scientist ¢’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures scientist ¢’s
individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not covered
in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i’s individual rank in the distribution of
invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist ¢’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

II.LE Overcoming Information Frictions Across Geographic and

Intellectual Distance

The results on scientists who move up the department quality ladder also enable us to
explore how citation metrics reduced information frictions. We would expect that citation
metrics would matter more in situations where peers did not have good information on
the quality of a potential hire.

We first investigate whether citation metrics help to overcome information frictions due
to geographic distance. Specifically, we estimate two regressions with different dependent
variables: (1) an indicator equal to 1 if scientist 4 moved to a higher-ranked department
that was geographically far, and (2) an indicator equal to 1 if scientist ¢ moved to a

higher-ranked department that was geographically close. We define departments to be
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Figure 7: Moving to Higher-Ranked Department, Specification 2
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Notes: The figure plots the coefficients and 95 percent confidence intervals from a variant of Equation (4)
with an alternative dependent variable: an indicator for moving to a higher-ranked department, see
Table 6, Specification 2.

geographically far if they are more than 100km apart.?> The results suggest that citation
metrics only impacted moves to higher-ranked departments that were geographically far but
not to departments that were geographically close (Figure 8, panel (a); and Table C.10).
We also investigate whether citation metrics helped to overcome information frictions due
to intellectual distance. We measure intellectual distance using cross-department citations
before the move of the scientist. Specifically, we measure whether scientist i’s papers
had been cited in the receiving department before the introduction of the SCI in 1963.
We estimate two regressions with alternative dependent variables: (1) an indicator equal
to 1 if scientist ¢+ moved to a higher-ranked department where i’s research was not cited
before the move, and (2) an indicator equal to one if scientist ¢ moved to a higher-ranked
department where 4’s research was cited at least once before the move.?* The results
suggest that citation metrics only impacted moves to higher-ranked departments where
scientist ¢ had not been cited before the move (Figure 8, Panel B; and Table C.10).
Overall, these findings show that citation metrics helped overcome information frictions
due to geographic and intellectual distance. Reducing these frictions may have enabled
departments to discover scientists in lower-ranked departments, even if they had not

interacted before.

Z3Results are similar if we define departments as geographically close using alternative cutoffs (see
Figure C.3).

24 Around a quarter of all moves to higher-ranked departments were to departments where scientists
were cited before.
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Figure 8: Moving To Higher-Ranked Departments by Geographic and Intellec-
tual Distance

(a) Geographic Distance of New Department (b) Citation Distance of New Department
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Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (3). Panel
(a) reports results from two regressions with alternative dependent variables: (i) an indicator for moving
to a higher-ranked department that was far from scientist i’s department; (ii) an indicator for moving to
a higher-ranked department that was close to scientist i’s department. Panel (b) reports results from two
regressions with alternative dependent variables: (i) an indicator for moving to a higher-ranked department
where scientist i’s papers were not cited before 1963; (ii) an indicator for moving to a higher-ranked
department where scientist i’s papers were cited before 1963. For detailed results, see Appendix Tables
C.9 and C.10.

IIT1 Heterogeneous Impact of Performance Metrics

As the next step of our analysis, we investigate the heterogeneous impact of the SCI
depending on the scientists’ citation rank and the rank of their department. Furthermore,
we investigate if minorities disproportionately profited from the availability of citation

metrics.

III.A Heterogeneous Effects by Individual-Level Citation Rank

First, we investigate if scientists in different percentiles benefited differentially from the
visibility of their citations. Specifically, we estimate a non-parametric variant of our main
regression:

Dep. Rank; = Z dq - L(Visible Cit Decile; = q) + Z 0, - 1(Invisible Cit Decile; = q) (5)

q q
+ 7 - Publications; + Subject FE + ¢;

1(Visible Cit Decile; = q) and 1(Invisible Cit Decile; = q) are indicator variables for

1’s decile in the visible and invisible citation distributions, respectively. We visualize the
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estimates relative to the bottom half of the visible and invisible individual-level citation
distribution (Figure 9).%

Figure 9: Heterogenous Effects by Individual-Level Citation Rank
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Notes: The figure plots coeflicients 3q (dark blue) and éq (light blue) and 95 percent confidence intervals
from Equation (5).

Over the upper half of the citation distribution, an increase in visible citations
increases the assortativeness of the match between the rank of scientist ¢ and the rank
of her department. Furthermore, the gap between visible and invisible citations widens
for higher deciles of the citation distribution. A scientist in the top decile of the visible
citation distribution was, on average, placed in a department that was 22.4 percentiles
higher in the department ranking, compared to scientists in the bottom half of the visible
citation distribution. This is equivalent to a physicist being placed at Harvard as opposed
to Case Western Reserve University. In contrast, a scientist in the top decile of the
invisible citation distribution was, on average, placed in a department that was only seven
percentiles higher ranked, compared to a scientist in the bottom half of the invisible
citation distribution. In Appendix Figure D.1, we further split up the top decile and show
that scientists in the very highest percentiles of the visible citation distribution are placed
in even higher-ranked departments. These results suggest that scientists at the upper end
of the citation distribution had a particularly large benefit from the availability of citation

metrics.

25To save space, we report results for the specification that controls for the number of publications by
year and subject, equivalent to column (3) of Table 3. The results for the other specifications are almost
identical. Because in some subjects, e.g., mathematics, a relatively high fraction of scientists have zero
citations, we do not separately estimate effects for lower deciles.
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III.B Heterogeneous Effects for Peripheral Scientists

Second, we analyze if scientists who were placed in lower-ranked departments (peripheral
scientists) in 1956 differentially benefited from the availability of citation metrics. For this
test, we restrict the sample to scientists who we observe both in 1956 and in 1969. The

outcome variable is their department rank in 1969:

Dep. Rank; = Zéf - 1(Visible Cit Decile; = q) x High-Ranked (1956);

q

+ Z 5qL - 1(Visible Cit Decile; = q) X Low-Ranked (1956);
a

+ Z Gf - 1(Invisible Cit Decile; = q) x High-Ranked (1956); (6)
q

+ Z 95 - 1(Invisible Cit Decile; = q) x Low-Ranked (1956);
q

+ w - Low-Ranked (1956); + 7 - Publications; + Subject FE + ¢;

Variable definitions are identical to Equation (5). We add interactions between the deciles
of the individual-level citation distributions with indicator variables that equal one if the
scientist was working in either a high-ranked or a low-ranked department in 1956. We
also control for the main effect of working in a low-ranked department in 1956. We define
low-ranked departments as those below the 75th percentile of the department ranking.?
In physics, for example, low-ranked departments are all departments that were ranked
lower than the University of Wisconsin, Madison.
We show estimates for the deciles of the visible citation distribution for scientists in high-
ranked and low-ranked departments in Figure 10.?” Estimates for scientists in low-ranked
departments are consistently larger than for scientists in high-ranked departments. The
p-values for the tests that coefficients for the top two deciles are the same in low-ranked
and high-ranked departments are below 0.001. This indicates that scientists who were in
lower-ranked departments in 1956 benefited disproportionately from the availability of
citation metrics.”®

In other words, citation metrics enabled the discovery of “hidden stars.” This may have
reduced misallocation by helping the highest-cited scientists in low-ranked departments to
move to high-ranked departments. This finding is consistent with anecdotal evidence; for
example, a contemporary scientist remarked that “[t|Jhe SCI was especially useful to find

people who would otherwise be overlooked” (as cited in Wouters, 1999b, p. 138).

26Results are qualitatively similar if we use alternative cutoffs (e.g., 60th, 70th, 80th, or 90th percentile,
see Appendix Figure D.2).

2TTo improve clarity, the figure does not report the estimates for the invisible citation deciles. As in
Figure 9, the estimates for invisible citations are consistently smaller than for visible citations. We also
find no difference in the impact of invisible citations depending on the department rank.

28These effects may be interpreted as mechanical because scientists in low-ranked departments in 1956
have more scope to move to a higher-ranked department. Nevertheless, it is important to quantify how
“hidden stars” may benefit from the availability of performance metrics.
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Figure 10: Heterogenous Effect of Citation Rank for Peripheral Scientists
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Notes: The figure plots coefficients Sf (orange) and SqL (blue) and 95 percent confidence intervals from
Equation (6).

One example, of such a “hidden star” is the medical scientist Hans Hecht. Swiss-born,
he obtained his M.D. in Germany in 1936. He escaped the Nazi regime in 1938 and
emigrated to the United States.?® He started his U.S. career as an “Instructor of Medicine
at the Wayne University School of Medicine, following which he moved to the University
of Utah, where, in 1946, he earned a second M.D. degree” (Katz, 1971) and became a
professor there. Arnold Katz of the Mount Sinai School of Medicine described that his:
“breadth of scientific interests [...] was always based on an extraordinarily high level of
scientific excellence [...] he was never taken in by the investigator with a long list of
unoriginal or superficial papers, but saw clearly the essential quality of a man’s work”
(Katz, 1971). In the mid-1960s, Hans Hecht was hired by the University of Chicago.

We explore whether the example of Hans Hecht indeed provides more general insights
into the characteristics of “hidden stars.” That is, we investigate which characteristics
are correlated with being underplaced before the availability of citation metrics. For
this analysis, we define star scientists as scientists whose total citations (both visible
and invisible) place them in the top five percent of the subject-level citation distribution
in 1969. For these 450 scientists we can infer some characteristics from our data, e.g.,
whether they were female, but also whether they were of Asian, Hispanic, or Jewish origin.
We measure these characteristics based on the names of academics (for more details, see
Appendix B.1). In addition, we collect information on where these star scientists obtained
their Ph.D. through an extensive web search.?"

We then report the average characteristics of star scientists in high-ranked departments

29Gee Becker et al. 2023 for the emigration of scientists from Nazi Germany.
30We obtain the Ph.D. university for 400 out of the 450 star scientists.
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and of star scientists who worked in low-ranked departments in 1956 (“hidden stars”).
38% of star scientists in high-ranked departments had received a Ph.D. from a top-10
department in the United States. In contrast, only 18% of “hidden stars” had received a
Ph.D. from a top-10 department (Figure 11). We also find that there were twice as many
women among “hidden stars”. Since there were very few women in academia at the time
(Taria et al., 2022), the difference is not statistically significant. Overall, this evidence
suggests that “hidden stars” had, on average, obtained their Ph.D. from worse universities

and that they were more likely to be female.

Figure 11: Characteristics of “Hidden Stars” and Other Star Scientists
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Notes: The figure reports characteristics of star scientists who were in high-ranked departments (blue)
and low-ranked departments (“hidden stars,” orange) in 1956. As before, low-ranked departments are
those below the 75th percentile of the department ranking in 1956. For this figure, we define star scientists
as all scientists in the top five percent of the subject-level citation distribution.

III.C Heterogeneous Effects for Minority Scientists

In the last part of this section, we investigate the heterogeneous impacts of citation metrics
on minority scientists. Specifically, we analyze whether women, Hispanics, Asians, and
Jews disproportionately benefited from the availability of citation metrics. As outlined
above, we identify these groups based on the names of academics. As the proportion of
minorities among academics was low in the 1960s (e.g., Card et al. 2023, Iaria et al. 2022),

we pool all minorities to gain power. We then estimate the following regression:
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Dep. Rank; = Z 551 - 1(Visible Cit Decile; = q) x Majority;

q

+ Z 8q" - L(Visible Cit Decile; = q) x Minority;

q

+ Z 93/[ - 1(Inwvisible Cit Decile; = q) x Majority; (7)
q

+ Z ;" - 1(Invisible Cit Decile; = q) x Minority;
q

+ w - Minority; + 7 - Publications; + Subject FE + ¢;

Variables are defined as before, but we add interactions with indicator variables that equal
one if the scientist belonged either to the majority or to the minority. We also control for
an indicator that equals one if the scientists belonged to a minority.

While we do not find evidence that minority scientists, on average, benefited more from
citation metrics than majority scientists (Appendix Table D.2), the evidence in Figure 12
suggests that among star scientists (top decile) minority scientists benefit slightly more
than majority scientists.®® The p-value for the test that the coefficients for the tenth decile
are the same for minority and majority scientists is 0.051.

Figure 12: Heterogenous Effects for Majority and Minority Scientists
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Notes: The figure plots coefficients Sé\/l (blue) and 5;” (orange) and 95 percent confidence intervals from
Equation (7).

Taken together, these results suggest that the availability of more “objective” perfor-

mance metrics helped disadvantaged high-quality scientists. In particular, highly cited

31The democratizing effect of citation metrics is driven by larger effects of citation metrics for women

and Jews (see Figure D.3). These results are robust to adding a control for the department rank of
scientist 7 in 1956 (Appendix Figure D.4).
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scientists in lower-ranked departments (“hidden stars”) and highly cited minority scientists

benefited from the availability of citation metrics.

IV Impact of Performance Metrics on Careers

As shown above, citation metrics increased assortative matching between scientists and
departments. In the last part of the paper, we study whether scientists with more
visible citations also accrued additional benefits. We investigate such benefits by studying
the impact of citation metrics on promotions and receiving NSF grants. This analysis
also speaks to whether citation metrics increased recognition by peers and the wider
scientific community, suggesting Matthew effects (Merton, 1968). We estimate the following

regressions:

Specification 1:

1[CareerOutcomel; = 6 - Visible Citations; + 0 - Invisible Citations; (8)
+ 7 - Publications; + Subject F'E + ¢;

Specification 2:

1[CareerOutcome); = 6y - Visible Citations; + 62 - Pseudo-Visible Citations; (9)
+ 61 - Invisible Citations (SCI years); + 62 - Invisible Citations (non-SCI years);
+ 7 - Publications; + Subject FE + ¢;

where 1[CareerOutcome]; is an indicator that equals one if the scientist was promoted or

received an NSF grant. The remaining variable definitions are identical to Equations (1)

and (2).

IV.A Effect on Promotions

We investigate if scientists who we observe as assistant or associate professors in 1956 were
promoted to full professors by 1969. This allows us to directly study how the introduction
of performance metrics influenced academic careers and peer recognition. We estimate
Equations (8) and (9), where the dependent variable equals one if scientist ¢ was promoted
to full professor between 1956 and 1969.

We find that the visible citation rank has a significant positive impact on promotions
(Table 7). The probability of promotion increased by 4.1 percentage points (or 5.8 percent

relative to the mean) for scientists with a 10 percentile higher visible citation rank.*?

32The effect of citation metrics on promotions is estimated within the set of academics who we observe
in 1956 and who have not left academia by 1969. Since the probability of leaving academia decreases with
visible citations (see Section I1.D), we likely estimate a lower-bound of the effect of citation metrics on
promotions.
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The estimates for invisible citations are close to zero and statistically insignificant. The

estimates from Specification 2 confirm these findings (Table 7 and Figure 13, panel (a)).

Table 7: Promotion to Full Professor

Dependent Variable: Promotion to Full Professor

) 2 ®3) 4) (5)
Specification 1: Visible vs. Invisible Citations
Visible Citations 0.0042  0.0046  0.0047  0.0041  0.0040
(0.0006) (0.0007) (0.0007) (0.0010) (0.0013)
Invisible Citations 0.0009  0.0003  0.0004 -0.0003 -0.0001
(0.0005) (0.0006) (0.0006) (0.0010) (0.0012)
P-value (Visible = Invisible) 0.002 < 0.001 <0.001 0.017 0.068
R? 0.140 0.145 0.154 0.366 0.395
Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations
Visible Citations 0.0043  0.0048  0.0048  0.0041  0.0041
(0.0006) (0.0006) (0.0007) (0.0010) (0.0013)
Pseudo-Visible Citations 0.0000  -0.0004 -0.0003 -0.0002  0.0001
(0.0006) (0.0006) (0.0006) (0.0011) (0.0012)
Invisible Citations (SCI years) 0.0006  0.0005  0.0005  0.0006  0.0006
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)
Invisible Citations (non-SCI years) 0.0003  0.0001  0.0002  -0.0007 -0.0011
(0.0005) (0.0005) (0.0005) (0.0009) (0.0011)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 0.017 0.068
P-value (Visible = Invisible (SCI years)) <0.001 <0.001 <0.001 0.015 0.054
P-value (Visible = Invisible (non-SCI years)) <0.001 <0.001 <0.001 <0.001 0.002
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.755 0.541 0.663 0.678 0.655
R? 0.140 0.146 0.154 0.366 0.395
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 3,364 3,364 3,364 3,364 3,364
Dependent Variable Mean 0.707 0.707 0.707 0.707 0.707

Notes: The table reports the estimates of Equation (81 in the first panel and of Equation (91 in the second panel. The dependent variable
is an indicator equal to one if scientist ¢ was promoted to full professor between 1956 and 1969. These regressions use the sample of
scientists observed in 1956 and 1969, who were not full professors in 1956. The explanatory variable Visible Citations measures scientist
’s individual rank in the distribution of visible citations. Invisible Citations measures scientist i’s individual rank in the distribution of
invisible citations. Pseudo-Visible Citations measures scientist i’s individual rank in the distribution of pseudo-visible citations (citations
in journals indexed in the SCI in 1961, but for years not covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI
years) measures scientist ¢’s individual rank in the distribution of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations
(non-SCI years) measures scientist i’s individual rank in the distribution of invisible citations in non-SCI years (citations in journals not
indexed in the SCI in 1961 and in years that were not covered, i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where
100 is the best and 1 the worst scientist. Publications by Year separately measure the number of scientist i’s publications in each year
between 1956 and 1969. Publications by Journal separately measure the number of scientist 4’s publications in each journal (e.g., Nature).
Standard errors are clustered at the department level.

The results indicate that departments indeed used citation metrics in promotion
decisions. As full professor positions come with many advantages such as prestige, job
security, and research funds, these findings suggest that citation metrics affected individual

careers and the allocation of resources in the sciences.

IV.B Effect on Research Grants

Finally, we investigate the effect of citation metrics on receiving research grants. This
analysis examines whether citation metrics affect the allocation of resources and recognition

by the wider scientific community. We digitize entries of all grants awarded in 1969 by
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the National Science Foundation (NSF) and match them to the scientists in our faculty
rosters (see Appendix B.1.3). We estimate Equations (8) and (9), where the dependent

variable equals one if scientist ¢ received at least one NSF grant.>

Table 8: Receiving an NSF Grant

Dependent Variable: Receiving NSF Grant
) 2) ®3) (4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0021  0.0017  0.0015  0.0013  0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations 0.0003  -0.0000 -0.0000  0.0001  0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
P-value (Visible = Invisible) <0.001 <0.001 <0.001 0.001 0.002
R? 0.064 0.070 0.086 0.215 0.249

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0020  0.0017  0.0015  0.0012  0.0012
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Pseudo-Visible Citations -0.0004  -0.0005 -0.0005 -0.0002 -0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations (SCI years) 0.0003  0.0001  0.0003  0.0003  0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Invisible Citations (non-SCI years) 0.0007  0.0005  0.0005  0.0004  0.0005
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (SCI)) <0.001 <0.001 <0.001 0.001 0.003
P-value (Visible = Invisible (non-SCI)) <0.001 <0.001 0.002 0.009 0.022
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI))  0.005 0.016 0.005 0.200 0.222
R? 0.066 0.071 0.087 0.215 0.249
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 15,582 15,582 15,582 15,582 15,582
Dependent Variable Mean 0.068 0.068 0.068 0.068 0.068

Notes: The table reports the estimates of Equation (81 in the first panel and of Equation (91 in the second panel. The dependent variable
is an indicator equal to one if scientist ¢ received an NSF grant in 1969. These regressions use the sample of scientists observed in 1969,
excluding medicine. The explanatory variable Visible Citations measures scientist ’s individual rank in the distribution of visible citations.
Invisible Citations measures scientist ¢’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures
scientist ¢’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not
covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i’s individual rank in the distribution
of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
i.e., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.

The visible citation rank has a significant positive impact on receiving NSF grants
(Table 8). The probability of receiving a grant increased by 1.3 percentage points (or 19.0
percent relative to the mean) for scientists with a 10 percentile higher visible citation rank.
The estimates for invisible citations are close to zero and statistically insignificant. The
estimates from Specification 2 confirm these findings (Table 8 and Figure 13, panel (b)).

These results highlight that the effects of citation metrics go beyond the allocation

of talent: they affect whether scientists are promoted and whether they receive research

33We exclude medical scientists from this analysis because the NSF does not fund research in medicine.
If we include medical researchers, the results are very similar (see Appendix Table E.1).
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Figure 13: Effect on Career Outcomes, Specification 2

5 (b) Receiving NSF Grant

(a) Promotion
3 0015

0.006

001
0.004

0.002 .0005

Prob.(Promotion to Full Professor)
Prob.(Receiving NSF Grant)
>

-0.002 -0005

Visible Pseudo-Visible Invisible Invisible Visible Pseudo-Visible Invisible Invisible
(SCI years) (non-SCI years) (SCI years) (non-SCI years)

Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (9), see
Tables 7 and 8, Specification 2.

grants. Thus, recognition through citations enables high-performing scientists to accrue
additional rewards and resources, contributing to Matthew effects in the sciences (Merton,
1968).

V Conclusion

The evaluation of scientists based on performance metrics, and in particular citations, has
become ubiquitous in modern science. Scientists are highly aware of the number of citations
their papers have received, and standard metrics like the impact factor or the h-index are
not only used to evaluate scientists and papers but also influence hiring and promotion
decisions. Equally, departments and scientific journals are frequently ranked based on
citation measures. This widespread reliance on citation metrics has been criticized, as
citations only capture one dimension of an academic’s contribution to knowledge (DORA,
2013; CoARA, 2022). Despite these concerns, little is known about the consequences of
measuring citations for scientific careers, and the allocation of talent and resources.

In this paper, we use the introduction of the Science Citation Index to provide the
first causal estimates of how citation metrics affect the organization of science. We collect
new data and develop a new identification strategy to show that systematically measuring
and revealing citations had a large and immediate impact on the careers of scientists.
First, we show that the introduction of citation metrics increased assortative matching
between scientists and departments based on citations by reducing information frictions.
Second, we show that the effect was particularly pronounced for scientists in the top end
of the citation distribution, and especially for “hidden stars” (highly cited scientists in
lower-ranked departments), as well as for highly cited minority scientists. Finally, we show

that measuring citations increased the reliance on citation metrics in promotion decisions
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and in allocating research grants. Overall, our findings demonstrate that citation metrics

have a profound impact on the organization of modern science.
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Appendix
The Appendix presents details on data collection and additional results:

e Appendix A provides further background on the SCI.
e Appendix B provides details on data collection.

e Appendix C reports robustness checks and additional findings on the analysis of

assortative matching in Section II.
e Appendix D reports additional findings on the heterogeneity analysis in Section III.

e Appendix E reports additional findings on the analysis of career outcomes in Sec-
tion IV.

A Background on the SCI

Figure A.1: Entry in Science Citation Index

(a) The 1961 SCI volume (b) A page in the 1961 SCI

ABEL 139

f CIENCE!  soe :
TATION E SCIENGEy  SCIENGE
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Notes: Panel (a) shows the five books of the 1961 SCI. Panel (b) shows a sample page in the 1961 volume
of the SCL



Figure A.2: Example of Citing Journal List

Science Citation Index - 1961
Source Journals

Arranged by Full Title

ACTA ALLERGOLOGICA ACT ALLERG AGRICULTURAL AND BIOLOGICAL AGR BIOL CH

ACTA ANAESTHESIOLOGICA ACT ANAE SC CHEMISTRY
SCANDINAVICA AGRONOMY JOURNAL AGRON 4

ACTA ANATOMICA ACT ANATOM AMERICAN DOCUMENTATION AM DOCUMENT

ACTA BIOCHIMICA POLONICA ACT BIOCH P AMERICAN HEART JOURNAL AM HEART J

ACTA BIOLOGICA ACADEMIAE ACT BIOL H AMERICAN JOURNAL COF ANATOMY AM J ANAT
SCIENTIARUM HUNGARICAE AMERICAN JOURNAL OF BOTANY AM J BOTANY

ACTA BIOLOGICA ET MEDICA ACT BIO MED AMERICAN JOURNAL OF CARDIOLOGY AM J CARD
GERMANILCA AMERICAN JOURNAL OF CLINICAL AM J CLIN N

ACTA CHEMICA SCANDINAVICA ACT CHEM SC NUTRITION

ACTA CHIMICA ACADEMIAE ACT CHIm H AMERICAN JOURNAL OF CLINICAL AM J CLIN P
SCIENTIARUM HUNGARICAE PATHOLOGY

ACTA CHIRURGICA ACADEMIAE ACT CHIR H AMERICAN JOURNAL OF DIGESTIVE AN J DIG DI
SCIENTIARUM HUNGARICAE DISEASES

ACTA CIENTIFICA VENEZOLANA ACT CLENT ¥ AMERICAN JOURNAL OF DISEASES AM J DIS CH

ACTA CRYSTALLOGRAPHICA ACT CRYST OF CHILDREN

ACTA CYTOLOGICA ACT CYTOL AMERICAN JOURMAL OF AM J GASTRO

ACTA DERMATO-VENEREOLOGICA ACT DER-VEN GASTROENTEROLOGY

ACTA ENDOCRINOLOGICA ACT ENDOCR AMERICAN JOURNAL OF HUMAN AM J HU GEN

ACTA ENDOCRINOLOGICA SUPPLEMENTUM ACT ENDOCR GENETICS

ACTA GENETICA ET STATISTICA ACT GENET 5 AMERICAN JOURNAL OF HYGIENE AM J HYG
MEDICA AMERICAN JOURNAL OF MATHEMATICS AM J MATH

ACTA GENETICAE MEDICAE ET ACT GENET M AMERICAN JOURNAL OF MEDICINE AM J MED
GEMELLOLDGIAE AMERICAN JOURNAL OF OBSTETRICS AM J 0BST &

ACTA HAEMATOLOGICA ACT HAEMAT AND GYNECOLOGY

ACTA HEPATO-SPLENOLOGICA ACT HEP-SPL AMERICAN JOURNAL OF OPHTHALMOLOGY AM J OPHT,

AT Lrraence AT g MERicAN JoUmAL G SATeCesy' AN 3 ST

ACTA MEDICA ACADEMIAE SCIENTIARUM  ACT MED MW AMERICAN JOUR oF AM J PHA ED
HUNGARICAE PHARMACEUTICT, EDUCATION

Notes: This figure shows the first page of the “Source Journal List” of the 1961 SCI (Garfield, 1963b).
This is a complete list of all 613 citing journals, from which citations were indexed for the 1961 SCI.
We construct visible citations based on this list and the analogous lists from the 1964 to 1969 SCIs (see
Section I.B).



Figure A.3: Internal Correspondence at Ohio State University

THE OHIO STATE UNIVERSITY LIBRARIES
Chemistry Library
COLUMBUS 10, OHIO

LEWIS C. BRANSCOMB
Director of Libraries September 21, 1265

Professor Hyman W, Kritzer
Assistant Director, Public Services
Main Library, 1858 Neil Avenue
Campus

Dear Professor Kritzer:

I would like to place a subscription for the Science
Citation Tndex for Chemistrv Librarv. In view of the scarcity
of funds for periodical subscriptions, I am sending the order
to you for vour approval and assistance,

A poll of some of the faculty in the Chemistry Department
revealed that, without exception, all the younger men would
like to have SCI available for use in Chemistry Library. The
senior faculty are not as emphatic but would like to have it
available also.

Since SCI definitely complements the Chemical Abstracts
approach to the literature and since placing it in Chemistry
Library would mean fairly close access for other science
departments in the area, I think special consideration should
be given to our request for a subscription.

Sincerely,

Wf}
Vlrgl ia E.

Chemistry lerarjan
VEY:kk

Enclosures: Correspondence to Chemistry faculty with comments
attached.

Notes: In this letter, the chemistry librarian at Ohio State University requested a second copy of the SCI
to be placed in the library of the chemistry department, in addition to the existing copy at the medical
library. It shows that as early as 1965 there was large demand by chemists at Ohio State University to
use the SCI. We thank archivists at Ohio State University Library for sharing this document.



B Further Details on Data

B.1 Data on Scientists
B.1.1 Linking Faculty Rosters with Publication and Citation Data

As described in the main text, we link scientists with their publications and citations
using the linking algorithm developed in Iaria et al. (2022). The links are based on the
academic’s surname, first name or initials (depending on whether first names are available),
country, city, and subject. The matching is based on the primary subject of each academic
(e.g., physics) to reduce the number of false positives. To harmonize affiliations across the

faculty rosters and the Web of Science, we rely on Google Maps API.

B.1.2 Coding Minority Status

In Section III, we report results on the heterogeneous effect of citation metrics. In
particular, in Section I1I.C, we report differential results for women and for people with
Asian, Hispanic, and Jewish names.

We use information in the faculty rosters to tag scientists as members of one of these
groups. Gender coding relies on information on gender that can be directly observed in
the faculty rosters (e.g., Miss in front of the first name) and the first names of scientists
(see ITaria et al. (2022)).

We code Jewish names based on the approach in Benetti et al. (2023). Using their
classification of Jewish names results in an overly conservative classification of Jewish
scientists. We therefore lower the cut-off for classifying names as distinctively Jewish to
5 (instead of 10). However, results remain very similar when using the cut-off used in
Benetti et al. (2023).

The coding of Hispanic names is based on data from the U.S. Census. We draw a list
of Hispanic names from Name Census (2023b). From this list, we select all surnames with
a conditional probability of self-identifying as Hispanic of more than 25%. We then tag all
academics who have one of these names as Hispanic.

Similarly, we use data from the U.S. Census to code Asian names. We draw a list of
the most common Asian names from Name Census (2023a). From this list, we select all
surnames with a conditional probability of self-identifying as Asian or Pacific Islander of

more than 50%.3% We then tag all academics who have one of these names as Asian.

B.1.3 Data on NSF Grants

For the analysis in Section IV.B, we match scientists in our faculty rosters with historical

records on grants by the National Science Foundation (NSF'). We digitize entries on all

34The different cutoffs for Asian and Hispanic names reflect different assimilation patterns of the various
immigrant groups. Results are very similar if we impose the same cutoffs for both groups.



grants listed in the 1969 Annual Report of the NSF.3> We then match principal investigators

from these grants to the scientists in our data based on first names, last name, and subject.

B.2 Department Rankings

The following six tables list the top 20 departments according to our self-constructed

rankings (by average citations and by average publications in a department) and according

to survey-based rankings from the 1960s and 1970s. Across all rankings similar departments

are ranked among the top 20 departments.

Table B.1: Top 20 Departments: Biochemistry

Rank Citations Ranking

Publications Ranking

Cartter Ranking

Roose-Andersen Ranking

1 Stanford

2 Rockefeller

3 Johns Hopkins
4 Washington

5 Harvard

6 Kentucky

7 U.C. Berkeley
8 Dartmouth

9 Wisconsin

10 Michigan

11 U.C. Davis

12 Brandeis

13 Case Western Reserve
14 Utah

15 Duke

16 U.C.L.A.

17 Columbia

18 Pennsylvania
19 Chicago

20 Rochester

Washington

Harvard

Stanford

U.C. Berkeley

Dartmouth

Wisconsin

Michigan

Kentucky

Johns Hopkins

Virginia Polytechnic Institute
U.C. Davis
Kansas 2
Saint Louis
Rockefeller
Duke
U.C.L.A.
Columbia
Case Western Reserve
Rice

Brandeis

12

Harvard

U.C. Berkeley
Stanford

Rockefeller

Wisconsin

M.I.T.

Cal. Tech.

Johns Hopkins
Brandeis

Illinois

Columbia

Case Western Reserve
N.Y.U.
Washington
Duke
Michigan
Pennsylvania !
Yeshiva University 17
Chicago

U.C.L.A.

7

Harvard

Stanford 2

U.C. Berkeley 2
Rockefeller
Wisconsin

Cal. Tech.

M.LT.

Brandeis 8

Cornell 8

Johns Hopkins &
Duke M

U.CLA. 1!

U.C. San Diego
Washington 3
Yeshiva University '
Chicago 6

Illinois '

Princeton 6

Case Western Reserve
NY.U. ¥

19

Notes: This table lists the top 20 biochemistry departments based on four different department rankings. The first column reports our self-
constructed ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists
employed at the department in 1969. The second column reports our self-constructed ranking based on the average number of publications
(between 1956 and 1969) of all scientists employed at the department in 1969. The third column reports the ranking from Cartter (1966). The
fourth column reports the ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of the four rankings), a
superscript indicates their rank. In the analysis, they are given the same rank.

35These data were generously shared by Dan Gross.



Table B.2: Top 20 Departments: Biology

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 Rockefeller Albion College U.C. Berkeley Harvard

2 Albion College Millikin Harvard U.C. Berkeley
3 Harvard Texas Cal. Tech. M.IT.

4 Princeton Georgetown College Johns Hopkins Cal. Tech.

5 U.C. San Diego Rockefeller ° Rockefeller Rockefeller

6 Stanford U.C. San Diego ® Wisconsin Wisconsin

7 Cal. Tech. U.C. Riverside linois Stanford

8 Texas Wisconsin Michigan Washington

9 U.C. Berkeley U.C. Berkeley Stanford U.C. San Diego ?
10 Syracuse Stanford Minnesota Yale ?

11 Brandeis U.C. Davis Indiana ! Chicago

12 Yale Brandeis Princeton ! Mlinois

13 Chicago Princeton Cornell Cornell

14 M.LT. Notre Dame Yale U.C. Davis

15 U.C. Santa Barbara ~ Whitman College Purdue ' Michigan

16 Notre Dame Mount Holyoke College ~ U.C.L.A. ' Duke

17 Johns Hopkins Alma College Case Western Reserve U.C.L.A.

18 Whitman College U.C. Santa Barbara Washington Johns Hopkins
19 Washington Central College Pella ¥  Chicago Brandeis

20 U.C. Davis Harvard 1° Pennsylvania Indiana

Notes: This table lists the top 20 biology departments based on four different department rankings. The first column reports our
self-constructed ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969)
of all scientists employed at the department in 1969. The second column reports our self-constructed ranking based on the average
number of publications (between 1956 and 1969) of all scientists employed at the department in 1969. The third column reports the
ranking from Cartter (1966). While the Cartter ranking does not report rankings for biology overall, it does report rankings for five
subfields of biology (Bacteriology/Microbiology, Botany, Entomology, Physiology, and Zoology). Based on these rankings, we construct
an overall score for biology by taking the average rank of a department in the five reported subfields of biology. The fourth column
reports the ranking from Roose and Andersen (1970). While the Roose-Andersen ranking does not report results for biology overall,
it does report rankings for eight subfields of biology (Botany, Developmental Biology, Entomology, Microbiology, Molecular Biology,
Physiology, Population Biology, and Zoology). Based on these rankings, we construct an overall score for biology by taking the average
rank of a department in the eight reported subfields of biology. Where departments are ranked equally (in any of the four rankings), a
superscript indicates their rank. In the analysis, they are given the same rank.

Table B.3: Top 20 Departments: Chemistry

Rank Citations Ranking Publications Ranking Cartter Ranking Roose-Andersen Ranking

1 U.C. Irvine U.C. Santa Barbara Harvard Harvard

2 Stanford Thiel College Cal. Tech. Cal. Tech.

3 Harvard Stanford U.C. Berkeley Stanford 3

4 U.C. Santa Barbara U.C. Riverside M.LT. U.C. Berkeley 3
5 U.C.L.A. U.C. Irvine Stanford M.I.T.

6 U.C. Riverside Southern California Tllinois Illinois

7 Cal. Tech. College of Forestry at Syracuse Columbia 7 U.C.L.A.

8 Northwestern Iowa State Wisconsin 7 Chicago 8

9 Southern California Utah U.C.L.A. Columbia 8

10 College of Forestry at Syracuse U.C. Davis Chicago Cornell &

11 Thiel College Northwestern Cornell Wisconsin &

12 U.C. Berkeley Texas Yale Yale

13 Towa State U.C.L.A. Princeton Princeton

14 Rice Case Western Reserve Northwestern Northwestern
15 Tllinois Pennsylvania Minnesota Iowa State %
16 Utah Mlinois Iowa State Purdue '°

17 Notre Dame Johns Hopkins Ohio State 7 Ohio State 7
18 U.C. Santa Cruz lowa State Purdue 7 Texas 7

19 Columbia Michigan Michigan U.C. San Diego 17
20 Texas Harvard Indiana Indiana

Notes: This table lists the top 20 chemistry departments based on four different department rankings. The first column reports our self-constructed
ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the
department in 1969. The second column reports our self-constructed ranking based on the average number of publications (between 1956 and 1969) of all
scientists employed at the department in 1969. The third column reports the ranking from Cartter (1966 1. The fourth column reports the ranking from
Roose and Andersen (19701. Where departments are ranked equally (in any of the four rankings), a superscript indicates their rank. In the analysis, they
are given the same rank.



Table B.4: Top 20 Departments: Mathematics

Rank Citations Ranking

Publications Ranking

Cartter Ranking Roose-Andersen Ranking

0~ O U= W N

e}

10
11
12
13
14
15
16
17
18
19
20

Princeton U.C. Santa Barbara Harvard Harvard !
Chicago U.C. Riverside U.C. Berkeley U.C. Berkeley
Stanford Harvard Princeton Princeton
Institute for Advanced Study Princeton Chicago Chicago
Harvard Carnegie-Mellon M.LT. M.LT.
Columbia Washington Stanford Stanford
Johns Hopkins Chicago Yale Yale

Brandeis Johns Hopkins N.Y.U. N.Y.U.

U.C. Berkeley Rockefeller Columbia Wisconsin
Virginia Polytechnic Institute Stanford Wisconsin Columbia 10
Rockefeller Washington Saint Louis Michigan Michigan 1°
U.C. San Diego Columbia Mlinois Cornell 12
Washington Virginia Cornell Illinois 2
Carnegie-Mellon U.C. San Diego Cal. Tech. U.C.L.A.
Wisconsin Wisconsin Minnesota Brandeis
Yale Brandeis U.C.L.A. Brown °
Washington Saint Louis Yale Washington Cal. Tech. 1
Case Institute of Technology  Institute for Advanced Study Brown Minnesota 8
Brown Minnesota Brandeis Pennsylvania *
Cornell Michigan Johns Hopkins Washington '8

1

8

Notes: This table lists the top 20 mathematics departments based on four different department rankings. The first column reports our self-constructed
ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the
department in 1969. The second column reports our self-constructed ranking based on the average number of publications (between 1956 and 1969)
of all scientists employed at the department in 1969. The third column reports the ranking from Cartter (1966). The fourth column reports the
ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of the four rankings), a superscript indicates their rank. In
the analysis, they are given the same rank.

Table B.5: Top 20 Departments: Medicine

Rank Citations Ranking Publications Ranking Cole-Lipton Ranking
1 Rockefeller New Mexico Harvard

2 Harvard Minnesota Rochester Johns Hopkins 2

3 Utah Rutgers Stanford 2

4 U.C. San Diego U.C. San Diego U.C. San Francisco

) Minnesota Rochester Harvard Yale

6 Rutgers Ambherst College Columbia

7 Washington Loretto Heights College Duke

8 M.LT. Medical College of Virginia Michigan

9 Texas M.IT. Cornell

10 U.C. San Francisco Washington Washington Saint Luis
11 Johns Hopkins U.C.L.A. Pennsylvania

12 Minnesota Johns Hopkins Minnesota

13 U.C.L.A. Utah U.C.L.A.

14 Florida Minnesota Albert Einstein College
15 New Mexico Florida ° Chicago Pritzker ®

16 Kansas Rockefeller Washington

17 Medical College of Virginia U.C. San Francisco Case Western Reserve
18 Washington Saint Louis Southern California Rochester

19 Stanford Mississippi Colorado

20 Columbia Wagner College U.C. San Diego

Notes: This table lists the top 20 biochemistry departments based on four different department rankings. The
first column reports our self-constructed ranking based on the average number of citations (between 1956 and
1969, to publications between 1956 and 1969) of all scientists employed at the department in 1969. The second
column reports our self-constructed ranking based on the average number of publications (between 1956 and
1969) of all scientists employed at the department in 1969. The third column reports the ranking from Cole and
Lipton (1977). Since Cartter (1966) and Roose and Andersen (19701 do not report rankings for medical schools,
we use the ranking by Cole and Lipton (1977) for medicine. Where departments are ranked equally (in any of
the three rankings), a superscript indicates their rank. In the analysis, they are given the same rank.



Table B.6: Top 20 Departments: Physics

Rank Citations Ranking

Publications Ranking

Cartter Ranking Roose-Andersen Ranking

1 U.C. San Diego U.C. Riverside U.C. Berkeley Cal. Tech. !

2 U.C. Riverside U.C. San Diego Cal. Tech. Harvard !

3 U.C. Berkeley Lycoming College Harvard U.C. Berkeley !
4 Chicago U.C. Santa Barbara Princeton Princeton

5 Rockefeller Kentucky Wesleyan College Stanford M.LT. ®

6 Stanford Goshen College M.LT. Stanford 3

7 Princeton Chicago Columbia Columbia 7

8 Columbia Harvard Tllinois Mlinois *

9 U.C. Santa Barbara Rockefeller Cornell Chicago °

10 Harvard U.C. Irvine Chicago Cornell ©

11 Pennsylvania Columbia Yale U.C. San Diego 1
12 U.C. Irvine Stanford Wisconsin Yale 1

13 Brown Princeton Michigan '3 Wisconsin

14 Carnegie-Mellon Pennsylvania Rochester 3 Michigan

15 Cal. Tech. Pittsburgh Pennsylvania Pennsylvania 4
16 Pittsburgh Brown Maryland Maryland 16

17 State University of New York U.C. Berkeley Minnesota Rockefeller 16
18 Washington Towa State Washington Rochester

19 Mlinois Washington Johns Hopkins 1 U.C.L.A.

20 Johns Hopkins Notre Dame U.CLA. Y Minnesota

Notes: This table lists the top 20 physics departments based on four different department rankings. The first column reports our self-constructed
ranking based on the average number of citations (between 1956 and 1969, to publications between 1956 and 1969) of all scientists employed at the
department in 1969. The second column reports our self-constructed ranking based on the average number of publications (between 1956 and 1969)
of all scientists employed at the department in 1969. The third column reports the ranking from Cartter (19661. The fourth column reports the
ranking from Roose and Andersen (1970). Where departments are ranked equally (in any of the four rankings), a superscript indicates their rank.
In the analysis, they are given the same rank.



C Assortative Matching: Additional Results and Ro-

bustness

C.1 Graphical Representation of Specification 1
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Figure C.1: Specification 1: Illustration of Results
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Notes: The figure illustrates the results from Equation (1), see Table 3, Specification 1. Panel (a) shows a
bin-scatter plot with the visible citation percentile rank on the horizontal axis and the department rank
on the vertical axis, conditional on invisible citations and publication controls. Panel (b) shows a binned
scatter plot with the invisible citation percentile rank on the horizontal axis and the department rank on
the vertical axis, conditional on visible citations and publication controls. The slopes are significantly
different from each other; the p-value from a t-test of no difference is < 0.001.



C.2 Robustness Checks

In this section, we show that the main results are robust to various changes to the analysis.
First, in Appendix C.2.1, we show that results are similar for alternative measures of the
department rank. Second, in Appendix C.2.2, we show results are similar for alternative
performance measures of individual scientists. Third, in Appendix C.2.3, we show that
the results are robust to different ways of assigning percentile ranks to scientists and
departments. Last, in Appendix C.2.4, we show that the results hold in different subsamples.
To reduce the number of tables, we report all robustness checks using the specification
equivalent to column (3) in Table 3, Specification 1. The results are very similar across
specifications using alternative control variables, corresponding to columns (1), (2), (4),
and (5) in Table 3.

C.2.1 Alternative Department Rankings

First, we consider alternative department rankings. The main results (Table 3) are
estimated with department ranks based on the leave-out mean of citations as the dependent
variable. The results are robust to using rankings based on the mean of citations, i.e.,
including citations of the focal scientist (Table C.1, Panel A, column (2)). Instead of
using department rankings based on citations, we can use scientists’ publication counts
to construct department rankings. This leaves the results almost unchanged (Table C.1,
Panel A, columns (3) and (4)).

Our results also hold if we construct department rankings based on the scientific output
of departments in the 1956 cross-section (Table C.1, Panel B). While 1956 rankings have
the advantage that they are determined before the introduction of the SCI, they are not
available for universities that only enter the data after 1956. Moreover, the 1956 rankings
may suffer from higher measurement error, because we measure department composition
before hiring and moving decisions were actually made. Ranking departments on the basis
of 1956 rankings results in a 25 percent smaller sample. Nevertheless, the results remain
qualitatively unchanged.

Our results are also robust to using external department rankings, which do not rely on
citation or publication data. We draw on subject-specific reputational rankings from Roose
and Andersen (1970) and Cartter (1966) to construct analogous department percentile
ranks. To avoid unnecessary sample selection for this robustness check, departments that
are not listed in these rankings are assigned the percentile rank between 1 and the lowest-

ranked department.®® As these rankings do not cover medical schools, we supplement

36This is necessary because these external rankings cover fewer departments than our data. Furthermore,
Roose and Andersen (1970) and Cartter (1966) do not contain rankings for biology as a whole but
for specific subfields of biology (Botany, Developmental Biology, Entomology, Microbiology, Molecular
Biology, Physiology, Population Biology, and Zoology in the Roose-Andersen ranking; Botany, Entomology,
Microbiology, Physiology, and Zoology in the Cartter ranking). For both the Roose-Andersen ranking
and the Cartter ranking, we construct an overall ranking for biology by calculating the average rank of a
department in the subfields of biology.
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Table C.1: Robustness Check: Alternative Measures of Department Quality

Dependent Variable: Department Rank

(1) (2) 3) (4)
Leave-Out Leave-Out
Mean of  Mean of Mean of Mean of
Department Ranking Based on: Citations  Citations Publications Publications

Panel A: Department Rankings From 1969

Visible Citations 0.280 0.320 0.286 0.318
(0.035) (0.030) (0.034) (0.028)
Invisible Citations 0.062 0.078 0.047 0.053
(0.021) (0.020) (0.020) (0.019)
P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 < 0.001
Observations 27,315 27,315 27,315 27,315
R? 0.153 0.207 0.150 0.210
Dependent Variable Mean 50.40 50.20 50.37 50.16

Panel B: Department Rankings From 1956

Visible Citations 0.169 0.178 0.158 0.175
(0.038) (0.039) (0.037) (0.039)
Invisible Citations 0.027 0.028 0.006 0.009
(0.026) (0.027) (0.026) (0.027)
P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 < 0.001
Observations 21,269 21,269 21,269 21,269
R? 0.066 0.066 0.061 0.063
Dependent Variable Mean 50.29 55.59 50.26 56.27
Subject Fixed Effects Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes

Notes: The table reports the estimates of Equation (1) with alternative department rankings as dependent
variables. In Panel A, department rankings are based on the 1969 cross-section of scientists; in Panel B, they
are based on the 1956 cross-section. For departments that did not exist in 1956, the 1956 ranking cannot
be computed. This results in a smaller sample size in Panel B. In column (1), the dependent variable is the
department rank, based on the leave-out mean of citations in the department of scientist i (as in Table 3).
In column (2), the department rank is based on the mean of citations in the department. In column (3),
the department rank is based on the leave-out mean of publications in the department. In column (4), the
department rank is based on the mean of publications in the department. The explanatory variable Visible
Clitations measures scientist ¢’s individual rank in the distribution of visible citations. Invisible Citations
measures scientist ¢’s individual rank in the distribution of invisible citations. We transform ranks into
percentiles, where 100 is the best and 1 the worst department/scientist. Publications by Year separately
measure the number of scientist i’s publications in each year between 1956 and 1969. Standard errors are
clustered at the department level.

these rankings with the first comprehensive ranking of medical schools by Cole and Lipton
(1977). We report the results of these tests in Table C.2, column (4). The estimates
show that our results are very similar if we use independently compiled reputation-based
rankings.

Instead of percentile ranks, we can also use the reputational rankings from Cartter
(1966) and Roose and Andersen (1970) to construct indicators for being in a top-ranked
department. According to both rankings, we assign each scientist an indicator for whether
they worked in a top-five, top-ten, or top-twenty department. In line with our main
results, a scientist with a higher visible citation rank was more likely to work in a top
department in 1969. For example, a ten-percentile increase in visible citations increased
the probability of being affiliated with a top-twenty department by 2.94 percentage points
(i.e., a 13.5 percent increase). In contrast, invisible citations had a much smaller effect on

the assortativeness of the match to a top-department (Table C.2, columns (1)-(3)).
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Table C.2: Robustness Check: External Department Ranking

Dependent Variable: Indicator — Dep. Rank

(1) (2) (3) (4)
Top 5 Top 10 Top 20

Panel A: Cartter Ranking

Visible Citations 0.00077  0.00156  0.00294 0.224
(0.00037)  (0.00039) (0.00044)  (0.031)
Invisible Citations 0.00023 0.00059 0.00083 0.046
(0.00018)  (0.00025) (0.00032) (0.022)
P-value (Visible = Invisible) 0.282 0.066 0.001 < 0.001
Observations 27,315 27,315 27,315 27,315
R? 0.050 0.061 0.097 0.104
Dependent Variable Mean 0.04 0.12 0.22 50.15

Panel B: Roose-Andersen Ranking

Visible Citations 0.00084  0.00166  0.00282 0.249
(0.00037) (0.00040) (0.00043) (0.032)
Invisible Citations 0.00025  0.00067  0.00096 0.039
(0.00019) (0.00025) (0.00032) (0.022)
P-value (Visible = Invisible) 0.234 0.061 0.004 < 0.001
Observations 27,315 27,315 27,315 27,315
R? 0.053 0.065 0.099 0.116
Dependent Variable Mean 0.05 0.12 0.22 50.15
Subject Fixed Effects Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes

Notes: The table reports the estimates of Equation (1), where the dependent variable is based on
the reputation-based department rankings by Cartter (1966) and Roose and Andersen (1970). Since
these rankings do not cover medical schools, for medicine we supplement them with the ranking of
medical schools by Cole and Lipton (1977). In columns (1)-(3), the dependent variable is an indicator
for whether scientist ¢ was employed at a top-5, top-10, or top-20 department. In column (4), the
dependent variable is the rank of scientist i’s department. To avoid unnecessary sample selection, we
assign departments that are not listed in these rankings to the average rank between 1 and the lowest-
ranked department. The explanatory variable Visible Citations measures scientist ¢’s individual rank
in the distribution of visible citations. Invisible Citations measures scientist i’s individual rank in
the distribution of invisible citations. We transform ranks into percentiles, where 100 is the best and
1 the worst department/scientist. Publications by Year separately measure the number of scientist
’s publications in each year between 1956 and 1969. Standard errors are clustered at the department
level.
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C.2.2 Alternative Transformations of Individual Citation Counts

We also show that results are robust to using alternative ways of measuring the performance
of individual scientists.

For the main results, we count citations independently of the number of co-authors
on the cited papers. In Table C.3, column (2), we report results of Specification 1, where
citations to each paper are divided by the number of authors of the paper. The results are
very similar.

Another concern could be that the results are driven by differences in the distributions
of visible and invisible citations. Larger measurement error for invisible citations could
potentially explain the smaller and insignificant coefficient for invisible citations. We
address this concern with a robustness check in which we only use citations from 1956 to
1965 to construct visible and invisible citation ranks. This leads to similar distributions
of visible and invisible citations.?” For these alternative variables, measurement error
concerns would, if anything, disproportionately downward bias the coefficient on visible
citations. Using these alternative individual citation ranks leaves our results qualitatively
unchanged (Table C.3, column (3)).

A further concern is that one “superstar” paper may place a scientist at the top of the
citation distribution. However, having many moderately cited papers might be a better
signal of quality than having very few highly cited papers. To account for both the number
of cited papers and for the citations they receive, we use the h-index (e.g., Hirsch, 2005;
Ellison, 2013) as an alternative performance metric. A scientist has an h-index of h if h of
their papers have at least h citations each. We calculate the h-index of visible and invisible
citations for each scientist. We then transform the h-index into the percentile rank for two
reasons: first, this makes the coefficient directly comparable to the main results. Second,
different scientific subjects have different publication and citation patterns. An h-index
of three (i.e., having at least three publications with at least three citations) therefore
indicates very different quality percentiles in each subject. For example, in medicine, a
subject where scientists publish many papers and receive many citations, an h-index of
three indicates poorer performance than in mathematics, a subject where scientists publish
relatively few papers and receive a lot fewer citations. When we use percentiles of the
visible and invisible h-indices as the explanatory variable, we confirm our main results
(Table C.3, column (4)).

We also show that the results are similar if we standardize visible and invisible
citations at the subject-level (Table C.3, column (5)). As standardized citations contain
large outliers, we show that the results are also robust to winsorizing citation counts at the
99th percentile and then standardizing citation counts (Table C.3, column (6)). Further,
the results are also similar if we use the inverse hyperbolic sine transformation of citations

(Table C.3, column (7)).

37For citations measured in 1956-1965 the summary statistics are as follows. Visible citations: mean
14.3, standard deviation 41.4; invisible citations: mean 17.3, standard deviation 52.1.
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Table C.3: Robustness Check: Alternative Transformations of Citation Counts

Dependent Variable: Department Rank

(1) (2) (3) (4) ©) (6) (7)

Co-Author Only Inverse

Main Weighted  1956-65 Standard- Winsorized Hyperbolic
Variable Transformation: Specification  Citations  Citations H-Index ized & Std. Sine
Visible Citations 0.280 0.288 0.209 0.267 2.484 4.631 3.294

(0.035) (0.034) (0.029)  (0.033) (0.693) (0.543) (0.567)
Invisible Citations 0.062 0.062 0.119 0.081 0.367 1.461 1.268

(0.021) (0.022) (0.025)  (0.021) (0.545) (0.416) (0.309)
Subject Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes Yes Yes Yes
P-value (Visible = Invisible) < 0.001 < 0.001 0.009 < 0.001 0.063 < 0.001 0.002
Observations 27,315 27,315 27,315 27,315 27,315 27,315 27,315
R? 0.153 0.157 0.139 0.152 0.105 0.116 0.149
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1) for alternative transformations of visible and invisible citations. The dependent variable is
the department rank in 1969, based on the leave-out mean of citations in the department of scientist i. In column (1), the explanatory variable
Visible Citations measures scientist i’s individual rank in the distribution of visible citations. Invisible Citations measures scientist ¢’s individual
rank in the distribution of invisible citations. We transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist.
In column (2), citation counts are divided by the number of authors of a paper and then transformed as in column (1). In column (3), citation
counts are based only on citations from 1956-1965 (instead of 1956-1969), and then transformed as in column (1). In column (4), the explanatory
variables are scientist i’s h-index values based on visible and invisible citations, which are then transformed into the percentile rank. In column (5),
we standardize citations by subject. In column (6), we standardize citations by subject, but to reduce the weight of outliers, we winsorize citation
counts at the 99th percentile before standardizing them. In column (7), we transform citations using the inverse hyperbolic sine. Publications
by Year separately measure the number of scientist ¢’s publications in each year between 1956 and 1969. Standard errors are clustered at the
department level.
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C.2.3 Scientists and Departments with Zero Citations

When more than one percent of scientists have zero citations, a unique percentile rank
cannot be assigned to these scientists. For example, in physics, 30.37% of observations
have zero citations. For these scientists, there is no unique percentile in the distribution
of citations. In our main analysis, we assign the mid-point between the 1st and the 31st
percentile, i.e., a percentile rank of 15.5, to each of these observations. Alternatively, we
can assign all of these observations to the 1st percentile (Min.-Point in Table C.4) or to the
31st percentile (Max.-Point). Reassuringly, the exact construction of percentile ranks of
scientists with zero citations has no qualitative impact on the findings (Table C.4, columns
(2) and (3)). A similar issue can occur for scientists with very low citation counts, e.g.,
one citation. We treat them accordingly.

Another way of assigning the percentile rank to scientists with zero citations is to
spread the specific percentile rank randomly within the group of scientists with zero
citations. In the above example of physicists with zero citations, this means that each of
these scientists’ percentile rank is independently drawn from a uniform distribution from 1
to 31. The results using this alternative transformation are similar to the main results

column (4).

Table C.4: Robustness Check: Alternative Percentile Rank Definititions

Dependent Variable: Department Rank

(1) (2) 3) (4)
Mid-Point Random
Variable Transformation: (Main Spec.) Min.-Point Max.-Point For 0 Cit.
Visible Citations 0.280 0.211 0.361 0.238
(0.035) (0.022) (0.059) (0.029)
Invisible Citations 0.062 0.048 0.107 0.068
(0.021) (0.014) (0.036) (0.015)
Subject Fixed Effects Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes
P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001 < 0.001
Observations 27,315 27,315 27,315 27,315
R? 0.153 0.155 0.148 0.147
Dependent Variable Mean 50.40 50.03 50.76 50.40

Notes: The table reports the estimates of Equation (1 for alternative constructions of the percentile rank
transformation. In all columns, the dependent variable is the department rank in 1969, based on the
leave-out mean of citations in the department of scientist i. The explanatory variable Visible Citations
measures scientist ¢’s individual rank in the distribution of visible citations. Invisible Citations measures
scientist 4’s individual rank in the distribution of invisible citations. We transform ranks into percentiles,
where 100 is the best and 1 the worst department/scientist. The columns differ in how percentile ranks
are assigned to brackets that comprise multiple percentiles. In column (1), departments and individuals
without citations are assigned a percentile according to the midpoint between 1 and the lowest percentile
with positive citations. In column (2), departments and individuals without citations are assigned to the
first percentile. In column (3), departments and individuals without citations are assigned to the lowest
percentile with positive citations. In column (4), individuals without citations are randomly assigned to a
percentile rank within the bracket of zero citations. Publications by Year separately measure the number
of scientist i’s publications in each year between 1956 and 1969. Standard errors are clustered at the
department level.
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C.2.4 Alternative Sample Restrictions

We also show that the results are robust to restricting the sample in various ways. In
particular, the findings are robust to excluding scientists with zero citations (Table C.5,
column (2)). This test shows that our findings are not driven by scientists without citations.
We also show that the results are robust to excluding scientists in small departments
because department ranks may be less precisely calculated in small departments. For this

test, we restrict the sample to all scientists in departments with more than 10 scientists

(Table C.5, column (3)).

Table C.5: Robustness Check: Alternative Sample Restrictions

Dep. Var.: Department Rank

(1) 2 (3)
Full Num. of Size of

Sample Restriction: Sample Cit. >0 Dept. > 10
Visible Citations 0.280 0.314 0.212
(0.035)  (0.039) (0.035)
Invisible Citations 0.062 0.085 0.060
(0.021)  (0.020) (0.021)
Subject Fixed Effects Yes Yes Yes
Publications by Year x Subject Yes Yes Yes
P-value (Visible = Invisible) < 0.001 < 0.001 < 0.001
Observations 27,315 17,066 22,753
R? 0.153 0.136 0.135
Dependent Variable Mean 50.40 56.56 54.97

Notes: The table reports the estimates of Equation (11 for alternative subsamples. The de-
pendent variable is the department rank in 1969, based on the leave-out mean of citations in
the department of scientist i. The explanatory variable Visible Citations measures scientist 7’s
individual rank in the distribution of visible citations. Invisible Citations measures scientist i’s
individual rank in the distribution of invisible citations. We transform ranks into percentiles,
where 100 is the best and 1 the worst department/scientist. Publications by Year separately
measure the number of scientist i’s publications in each year between 1956 and 1969. In column
(1), we use the full sample, i.e., it is equivalent to column (3) in of Table 3. Specification 1.
Column (2) reports results for the subsample of scientists who have more than zero citations.
Column (3) reports results for the subsample of scientists who are employed at departments
with at least ten scientists. Standard errors are clustered at the department level.
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C.3 Ruling out Alternative Explanations

In this section, we show that neither differences in the quality of citing journals nor
differential timing of citations biases our findings (Tables C.6 and C.7). Figure C.2

llustrates the variation used in these tests.

Figure C.2: Illustration of Variation Used in Additional Tests

(a) Specification 1 (b) Alternative Explanation 1
Citations in Journal A | Citations in Journal B | Citations in Journal C Citations in Journal A

1956 1956
1957 1 1957
1958 1958

1959 1 1 1959 1
1960 1960
1962 1 1962

1963 1 1963 1
1964
1965
1966

1967 2
1968
1 1969

(c) Alternative Explanation 2 (d) Specification 2

| | Citations in Journal A | Citations in Journal B | Citations in Journal C | Citations in Journal A | Citations in Journal B | Citations in Journal C

Notes: The four panels illustrate the sets of citations used for testing the alternative explanations in Appendix C.3 and for
Specification 2 in Section II.C. As in Table 2, these tables illustrate citations for a hypothetical scientist. Panel (a) illustrates
the variation used in Specification 1, see Table 3). Numbers in dark blue cells indicate citations that were visible in the
SCI because the citation occurred in a journal and year (1961, or 1964-69) that was indexed by the SCI. Numbers in light
blue cells indicate citations that were invisible, but are observable today. Panel (b) illustrates the variation used in testing
Alternative Explanation 1, i.e., where citations are counted from a consistent set of journals (see Table C.6). We disregard
citations in journals that were not indexed by the first SCI in 1961 (here: journals B and C), and focus only on citations in
journals that were indexed by the 1961 SCI (here: journal A). Numbers in dark blue cells indicate citations that were visible
in the SCI, i.e., citations from 1961, or 1964-69. Numbers in light blue cells indicate citations that were invisible because
they came from years not covered by the SCI. Panel (c) illustrates the variation used in testing Alternative Explanation 2,
i.e., where citation are counted in years in which the SCI was published (see Table C.7). We disregard citations from years
in which the SCI was not published, and focus only on citations in years that were covered by the SCI, i.e., citations from
1961, or 1964-69. Numbers in dark blue cells indicate citations that were visible in the SCI, because they came from journals
indexed by the SCI. Numbers in light blue cells indicate citations that were invisible because they came from journals not
indexed by the SCI. Panel (d) illustrates the variation used in Specification 2, equivalent to Table 4 in the main paper.
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Table C.6: Alternative Explanation 1: Citations From Consistent Set of
Journals

Dependent Variable: Department Rank

(1) (2) 3) (4) (5)

Visible Citations 0.289 0.299 0.260 0.228 0.219
(0.034) (0.030) (0.033) (0.033) (0.034)
Invisible Citations 0.109 0.075 0.067 0.069 0.066
(0.022) (0.020) (0.021) (0.023) (0.024)
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
P-value (Visible = Invisible) <0.001 <0.001 <0.001 <0.001 <0.001
Observations 27,315 27,315 27,315 27,315 27,315
R? 0.129 0.131 0.147 0.228 0.257
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1), where individual citation counts are based only
on the restricted set of citing journals that were indexed in the 1961 edition of the SCI. The dependent
variable is the department rank in 1969, based on the leave-out mean of citations in the department
of scientist 7. The explanatory variable Visible Citations measures scientist ¢’s individual rank in the
distribution of visible citations in the restricted set of citing journals. Invisible Citations measures
scientist i’s individual rank in the distribution of invisible citations in the restricted set of citing jour-
nals. We transform ranks into percentiles, where 100 is the best and 1 the worst department /scientist.
Publications by Year separately measure the number of scientist i’s publications in each year between
1956 and 1969. Publications by Journal separately measure the number of scientist i’s publications in
each journal (e.g., Nature). Standard errors are clustered at the department level.

Table C.7: Alternative Explanation 2: Citations Only From Years With SCI

Dependent Variable: Department Rank

(1) (2) 3) (4) (5)

Visible Citations 0.342 0.347 0.302 0.275 0.263
(0.039)  (0.035) (0.040) (0.040) (0.041)
Invisible Citations 0.066 0.047 0.046 0.033 0.037
(0.017)  (0.014) (0.014) (0.015) (0.015)
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
P-value (Visible = Invisible) < 0.001 <0.001 <0.001 <0.001 <0.001
Observations 27,315 27315 27,315 27,315 27,315
R? 0.137 0.140 0.153 0.232 0.260
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1), where individual citation counts are based only
the restricted set of citations from years when the SCI was available, i.e., 1961 and 1964-1969. The
dependent variable is the department rank in 1969, based on the leave-out mean of citations in the
department of scientist 7. The explanatory variable Visible Citations measures scientist i’s individual
rank in the distribution of visible citations in the restricted citation years. Invisible Citations measures
scientist ’s individual rank in the distribution of invisible citations in the restricted citation years. We
transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist. Publica-
tions by Year separately measure the number of scientist i’s publications in each year between 1956
and 1969. Publications by Journal separately measure the number of scientist ¢’s publications in each
journal (e.g., Nature). Standard errors are clustered at the department level.
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While the test for Alternative Explanation 2 in Table C.7 considers only citations in
years in which the SCI was published, one might still be concerned that even in this subset
of citations, visible citations, on average, come from later years. If later citations are more
important for career outcomes in 1969, this might still bias the results.

We address this concern by repeating the robustness test for smaller time windows
within the years covered by the SCI. In Table C.8, we present the results for five different
regressions in which we only count visible and invisible citations within five three-year
windows (1961 and 1964-1965, 1964-1966, 1965-1968, 1966-1968, and 1967-1969). This
enables us to abstract from the timing of citations and consider almost exclusively across-
journal variation in visibility. We show that the difference between visible and invisible
citations remains unchanged. Furthermore, the actual time window of measuring visible
and invisible citations only has a small impact on the estimates. This corroborates the
finding in Table C.7, that the timing of visible and invisible citations does not drive our

results.

Table C.8: Alternative Explanation 2: Restricted Time Windows

Dependent Variable: Department Rank

(1) (2) (3) (4) (5)

Clitation Years: 1961, 1964-65 1964-66 1965-67 1966-68 1967-69
Visible Citations 0.278 0.293 0.302 0.305 0.302

(0.038) (0.039) (0.039) (0.039) (0.039)
Invisible Citations 0.050 0.040 0.054 0.072 0.085

(0.013) (0.013)  (0.015) (0.016) (0.016)
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes Yes
P-value (Visible = Invisible) < 0.001 < 0.001 <0.001 <0.001 < 0.001
Observations 27,315 27,315 27315 27315 27,315
R? 0.141 0.145 0.147 0.149 0.150
Dependent Variable Mean 50.40 50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (1), where individual citation counts are based on
restricted sets of citations from years when the SCI was available. The dependent variable is the department
rank in 1969, based on the leave-out mean of citations in the department of scientist 7. The explanatory
variable Visible Citations measures scientist i’s individual rank in the distribution of visible citations in the
restricted citation years. Invisible Citations measures scientist i’s individual rank in the distribution of
invisible citations in the restricted citation years. We transform ranks into percentiles, where 100 is the
best and 1 the worst department/scientist. In column (1), visible and invisible citation counts are based on
the years 1961 and 1964-65; in column (2) 1964-66; in column (3) 1965-67; in column (4) 1966-68; and in
column (5) 1967-69. Publications by Year separately measure the number of scientist i’s publications in
each year between 1956 and 1969. Standard errors are clustered at the department level.
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C.4 Additional Findings

Table C.9: Moving to Higher-Ranked Department by Geographic Distance

Dependent Variable: Moving to Higher-Ranked Department by Geographic Distance

(1) 2) (3) (4) ()

Panel A: New Department Far

Visible Citations 0.0007  0.0006  0.0006  0.0008  0.0006
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Invisible Citations -0.0001  0.0000  -0.0000 -0.0004 -0.0003
(0.0003)  (0.0003) (0.0003) (0.0003) (0.0003)
P-value (Visible = Invisible) 0.097 0.227 0.220 0.070 0.154
Observations 6,478 6,478 6,478 6,478 6,478
R? 0.013 0.017 0.036 0.332 0.398
Dependent Variable Mean 0.042 0.042 0.042 0.042 0.042

Panel B: New Department Near

Visible Citations 0.0000  0.0000  0.0000  0.0000  0.0001
(0.0000) (0.0001) (0.0001) (0.0001) (0.0001)
Invisible Citations 0.0000  0.0000  0.0001  0.0000 -0.0000
(0.0000) (0.0001) (0.0001) (0.0001) (0.0001)
P-value (Visible = Invisible) 0.952 0.797 0.873 0.976 0.742
Observations 6,478 6,478 6,478 6,478 6,478
R? 0.001 0.003 0.021 0.321 0.442
Dependent Variable Mean 0.004 0.004 0.004 0.004 0.004
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes

Notes: The table reports the estimates from variants of Equation (3) with different dependent variables: in
Panel A, an indicator for moving to a higher-ranked department that was far from scientist i’s department; in
Panel B, an indicator for moving to a higher-ranked department that was close to scientist i’s department.
The cut-off between near and far departments is 100km. These regressions use the sample of scientists ob-
served in 1956 and 1969. The explanatory variable Visible Citations measures scientist ¢’s individual rank in
the distribution of visible citations. Invisible Citations measures scientist i’s individual rank in the distribu-
tion of invisible citations. We transform ranks into percentiles, where 100 is the best and 1 the worst scientist.
Publications by Year separately measure the number of scientist i’s publications in each year between 1956
and 1969. Publications by Journal separately measure the number of scientist i’s publications in each journal
(e.g., Nature). Standard errors are clustered at the department level.
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Figure C.3: Moving to Higher-Ranked Departments by Geographic Distance -
Alternative Cutoffs

(a) Cut-off: 100km (b) Cut-off: 200km
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Notes: The figure plots coefficients and 95 percent confidence intervals from variants of Equation (3).
Each panel reports results from two regressions with alternative dependent variables: (i) an indicator for
moving to a higher-ranked department that was far from scientist i’s department; (ii) an indicator for
moving to a higher-ranked department that was close to scientist i’s department. In panel (a) the cut-off
between near and far departments is 100km; in panel (b) 200km; in panel (¢) 300km; and in panel (d)
837km, which is the median distance of moves.
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Table C.10: Moving to Higher-Ranked Department by Citation Distance

Dependent Variable: Moving to Higher-Ranked Department by Citation Distance
(1) 2) (3) 4) (5)
Panel A: Not Cited In New Department Before SCI

Visible Citations 0.0007  0.0007  0.0006  0.0008  0.0007
(0.0002) (0.0003) (0.0003) (0.0003) (0.0003)
Invisible Citations -0.0004  -0.0002 -0.0002 -0.0005 -0.0005
(0.0002) (0.0003) (0.0002) (0.0003) (0.0003)
P-value (Visible = Invisible) 0.027 0.082 0.110 0.034 0.053
Observations 6,478 6,478 6,478 6,478 6,478
R? 0.008 0.012 0.026 0.294 0.360
Dependent Variable Mean 0.035 0.035 0.035 0.035 0.035

Panel B: Cited In New Department Before SCI

Visible Citations 0.0001  -0.0000  0.0000  0.0000  -0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Invisible Citations 0.0004  0.0003  0.0002  0.0002  0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
P-value (Visible = Invisible) 0.019 0.051 0.209 0.333 0.208
Observations 6,478 6,478 6,478 6,478 6,478
R? 0.020 0.030 0.060 0.439 0.533
Dependent Variable Mean 0.011 0.011 0.011 0.011 0.011
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes

Notes: The table reports the estimates from variants of Equation (3) with different dependent variables: in
Panel A, an indicator for moving to a higher-ranked department where scientist i’s papers were not cited
before 1963; in Panel B, an indicator for moving to a higher-ranked department where scientist i’s papers were
cited before 1963. These regressions use the sample of scientists observed in 1956 and 1969. The explanatory
variable Visible Citations measures scientist 4’s individual rank in the distribution of visible citations. Invisible
Clitations measures scientist i’s individual rank in the distribution of invisible citations. We transform ranks
into percentiles, where 100 is the best and 1 the worst scientist. Publications by Year separately measure the
number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered
at the department level.
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D Additional Findings: Heterogeneity Analysis
D.1 Heterogeneous Effect in Non-Parametric Analysis

Figure D.1: Heterogeneous Effects by Percentile Rank
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Notes: The figure plots coefficients o, (dark blue) and 6, (light blue) and 95 percent confidence intervals

from a variant of Equation (5). It differs from Figure 9 in that it splits up the 10th decile into smaller
percentile bins.
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Figure D.2: Heterogeneous Effects for Peripheral Scientists

(a) Cutoff: 60th percentile (b) Cutoff: 70th percentile

At High-Ranked
Department in 1956

Department Rank
Department Rank
|

At High-Ranked

* Department in 1956
L) 5
L]
5 ®
0.

Decile in Visible Citation Distribution Decile in Visible Citation Distribution

(c) Cutoff: 80th percentile (d) Cutoff: 90th percentile

s 1 At High-Ranked
10 + Department in 1956

Department Rank
———
Department Rank
4
°

10 * At High-Ranked
. ¢ Department in 1956

15 6 7 8 9 10 15 6 7 8 9 10

Decile in Visible Citation Distribution Decile in Visible Citation Distribution

Notes: The figure plots coefficients 351 (orange) and 3qL (blue) and 95 percent confidence intervals from
Equation (6) for alternative cutoffs of high and low-ranked departments. In panel (a) we define low-ranked
departments as those below the 60th percentile of the department ranking in 1956. In panel (b) we define
low-ranked departments as those below the 70th percentile of the department ranking in 1956. In panel
(c¢) we define low-ranked departments as those below the 80th percentile of the department ranking in

1956. In panel (d) we define low-ranked departments as those below the 90th percentile of the department
ranking in 1956.

24



Figure D.3: Heterogenous Effects for Minority Scientists
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(c) Academics with Asian Names (d) Academics with Jewish Names
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Notes: The figure plots coeflicients &J]W (blue) and 5;” (orange) and 95 percent confidence intervals from
Equation (7). Panel (a) plots separate sets of coefficients for women (orange) and men (blue). Panel
(b) plots separate sets of coefficients for Hispanics (orange) and Non-Hispanics (blue). Panel (c) plots

separate sets of coefficients for Asians (orange) and Non-Asians (blue). Panel (d) plots separate sets of
coefficients for Jewish (orange) and Non-Jewish scientists (blue).
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Figure D.4: Heterogenous Effects for Minority and Majority Scientists (Con-
trolling For Department Rank in 1956)
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Notes: The figure plots coefficients 3(11‘/[ (blue) and 5;” (orange) and 95 percent confidence intervals from a
variant of Equation (7), while controlling for the department rank of scientist in 1956. As a result, the
sample is restricted to scientists who appear in both 1956 and 1969. The p-value for the test that the
coefficients for the tenth decile are the same among minority and majority scientists is 0.034.
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D.2 Heterogeneous Effect on Assortative Matching

In Sections III.B and III.C, we perform heterogeneity analyses for scientists at low-ranked
departments and for minority scientists, respectively. These are based on a non-parametric
regression as outlined in Equations (6) and (7). Below, we report additional results on the
heterogeneous effect of citation metrics on assortative matching based on a variant of the

main specification (Equation (1)):

Dep. Rank; = 6 - Visible Citations; + 6" - Visible Ciitations; x Indicator; (D.1)
+ 0 - Invisible Citations; + 0! - Invisible Citations; x Indicator;

+ w - Indicator; + 7 - Publications; + Subject FE + ¢;

Indicator; takes value 1 if scientist ¢ is a member of a specific subgroup of scientists. In
Table D.1, we report results for peripheral scientists, i.e., where the indicator captures
whether a scientist was working at a low-ranked department in 1956. In Table D.2; we
report results for minority scientists, i.e., where the indicator captures whether the scientist

was part of a minority group.

Table D.1: Heterogeneous Effect on Assortative Matching for Peripheral
Scientists

Dependent Variable: Department Rank

(1) (2) ®3) (4) ()
Definition of Low-Ranked Department: Below 60 Below 70 Below 75 Below 80 Below 90

Visible Citations 0.168 0.112 0.088 0.119 0.176
(0.043) (0.038) (0.040) (0.047) (0.070)
Invisible Citations -0.001 -0.011 -0.008 -0.025 -0.074
(0.035) (0.035) (0.036) (0.042) (0.058)
Visible Citations x Indicator 0.075 0.138 0.169 0.151 0.100
(0.059) (0.050) (0.052) (0.057) (0.076)
Invisible Citations x Indicator 0.071 0.097 0.099 0.121 0.191
(0.054) (0.052) (0.051) (0.053) (0.064)
Indicator -36.700 -41.744 -43.410  -42.901 -40.917
(3.488) (3.273) (3.368) (3.688) (5.275)
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year x Subject Yes Yes Yes Yes Yes
Observations 6,374 6,374 6,374 6,374 6,374
R? 0.394 0.367 0.351 0.319 0.240
Dependent Variable Mean 59.47 59.47 59.47 59.47 59.47

Notes: The table reports the estimates of Equation (D.11, where the indicator captures whether scientist i was
working at a low-ranked department in 1956. The dependent variable is the department rank in 1969, based on the
leave-out mean of citations in the department of scientist 7. The explanatory variable Visible Citations measures
scientist i’s individual rank in the distribution of visible citations. Invisible Citations measures scientist ¢’s individual
rank in the distribution of invisible citations. We transform ranks into percentiles, where 100 is the best and 1
the worst department /scientist. Indicator is equal to one if scientist ¢ worked at a low-ranked department in 1956.
Thus, the sample used in this analysis is all scientists who appear in our data in both 1956 and 1969. We define
low-ranked departments as those below a specific percentile in the 1956 department ranking. The different columns
report estimates using different definitions of low-ranked department: 60th percentile in column (1), 70th percentile
in (2), 75th percentile in column (3), 80th percentile in column (4), and 90th percentile in column (5). Publications
by Year separately measure the number of scientist ¢’s publications in each year between 1956 and 1969. Standard
errors are clustered at the department level.

27



Table D.2: Heterogeneous Effect on Assortative Matching for Minority Scien-
tists

Dependent Variable: Department Rank

(1) (2) 3) (4) (5) (6)

Group Indicator: Main  Female Asian Hispanic Jewish Any Minority
Visible Citations 0.280 0.285  0.281 0.280 0.279 0.270
(0.035)  (0.040) (0.035) (0.035)  (0.035) (0.033)
Invisible Citations 0.062  0.049  0.063 0.062 0.063 0.064
(0.021) (0.022) (0.021) (0.021) (0.021) (0.021)
Visible Citations x Indicator -0.053  -0.050 0.068 0.049 0.020
(0.050) (0.076)  (0.181)  (0.088) (0.044)
Invisible Citations x Indicator -0.050  -0.043 0.035 -0.050 -0.039
(0.055) (0.084) (0.179)  (0.087) (0.043)
Indicator -2.871  2.452 -5.042 5.754 -5.772
(2.472) (3.262) (5.556) (3.352) (2.632)
Subject Fixed Effects Yes Yes Yes Yes Yes Yes
Publications by Year x Subject  Yes Yes Yes Yes Yes Yes
Observations 27,315 24,529 27315 27,315 27,315 27,315
R? 0.153  0.162  0.153 0.153 0.154 0.159
Dependent Variable Mean 50.40  48.08  50.40 50.40 50.40 50.40

Notes: The table reports the estimates of Equation (D.1), where the indicator captures whether scientist ¢ is part of
a minority group. The dependent variable is the department rank in 1969, based on the leave-out mean of citations
in the department of scientist . The explanatory variable Visible Citations measures scientist ¢’s individual rank in
the distribution of visible citations. Invisible Citations measures scientist i’s individual rank in the distribution of
invisible citations. We transform ranks into percentiles, where 100 is the best and 1 the worst department/scientist.
Indicator is equal to one if scientist ¢ is part of a minority group. Column (1) reports estimates of the main specifica-
tion for reference (see column (3) in Table 3. Specification 1). Columns (2)-(5) report estimates from regressions where
the indicator captures if scientist ¢ is part of a minority group: female in column (2), Asian in column (3), Hispanic
in column (4), and Jewish in column (5). Column (6) reports the estimates from a regression where the indicator
equals one if scientist 7 is part of any one of these subgroups. Publications by Year separately measure the number of
scientist ¢’s publications in each year between 1956 and 1969. Standard errors are clustered at the department level.
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E Additional Findings: Career Outcomes

Table E.1: Receiving an NSF Grant

Dependent Variable: Receiving NSF Grant
) 2 ®3) 4) (5)

Specification 1: Visible vs. Invisible Citations

Visible Citations 0.0013  0.0013  0.0009  0.0008  0.0007
(0.0002)  (0.0001) (0.0001) (0.0001) (0.0001)
Invisible Citations -0.0001  -0.0001 -0.0002 -0.0001  -0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
P-value (Visible = Invisible) <0001 <000l <000l <0001 0.001
R? 0.066  0.067 0107 0221  0.268

Specification 2: Visible vs. Pseudo-Visible vs. Invisible Citations

Visible Citations 0.0014  0.0014  0.0009  0.0008  0.0007
(0.0002) (0.0001) (0.0001) (0.0001) (0.0001)
Pseudo-Visible Citations -0.0005  -0.0005 -0.0005 -0.0003 -0.0003
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Invisible Citations (SCI years) 0.0001 0.0001 0.0001  0.0002  0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Invisible Citations (non-SCI years) 0.0003  0.0003  0.0003  0.0002  0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
P-value (Visible = Pseudo-Visible) <0.001 <0.001 <0.001 <0.001 <0.001
P-value (Visible = Invisible (SCI)) <0.001 <0.001 <0.001 0.001 0.001
P-value (Visible = Invisible (non-SCI)) <0.001 <0.001 <0.001 0.001 0.003
P-value (Pseudo-Vis. = Invis. (SCI) = Invis. (non-SCI)) < 0.001 < 0.001 <0.001 0.021 0.067
R? 0.067 0.068 0.108 0.222 0.268
Subject Fixed Effects Yes Yes Yes Yes Yes
Publications by Year Yes
Publications by Year x Subject Yes Yes Yes
Publications by Journal Yes
Publications by Journal x Subject Yes
Observations 27,315 27,315 27,315 27,315 27,315
Dependent Variable Mean 0.039 0.039 0.039 0.039 0.039

Notes: The table reports the estimates of Equation (81 in the first panel and of Equation (91 in the second panel. The dependent variable
is an indicator equal to one if scientist ¢ received an NSF grant in 1969. These regressions use the sample of scientists observed in 1969,
including medicine. The explanatory variable Visible Citations measures scientist 4’s individual rank in the distribution of visible citations.
Invisible Citations measures scientist ¢’s individual rank in the distribution of invisible citations. Pseudo-Visible Citations measures
scientist 7’s individual rank in the distribution of pseudo-visible citations (citations in journals indexed in the SCI in 1961, but for years not
covered in the SCI, i.e., 1956-1960 and 1962-1963). Invisible Citations (SCI years) measures scientist i’s individual rank in the distribution
of invisible citations in SCI years (1961 and 1964-1969). Invisible Citations (non-SCI years) measures scientist i’s individual rank in the
distribution of invisible citations in non-SCI years (citations in journals not indexed in the SCI in 1961 and in years that were not covered,
ie., 1956-1960 and 1962-1963). We transform ranks into percentiles, where 100 is the best and 1 the worst scientist. Publications by
Year separately measure the number of scientist i’s publications in each year between 1956 and 1969. Publications by Journal separately
measure the number of scientist i’s publications in each journal (e.g., Nature). Standard errors are clustered at the department level.
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