Peer Effects and Spillovers

Fabian Waldinger

Э

ヨト・モヨト

< 口 > < 同

Lecture Content

- Localized (within-firm) peer effects among low skilled workers: Mas and Moretti (2009), Bandiera, Barankay and Rasul (2010)
- Peer effects among high-skilled workers: Localized "within-firm": Waldinger (2012)
 Within research areas: Borjas and Doran (2012), see also Moser, Voena, and Waldinger (2014)
- 3 Localized spillovers across firms. Why do we see agglomeration? Ellison, Glaeser, and Kerr (2010), Greenstone, Hornbeck, and Moretti (2010).
- ④ Looking at knowledge spillovers among firms in more detail; product market rivalry vs. knowledge spillovers: Bloom, Schankerman, and Van Reenen (2012)

イロト イポト イヨト イヨト 二日

- Why could firm-level peers affect productivity?
 - 1 Peer pressure (other workers have to observe your productivity)
 - Pro-social behaviour (focal worker needs to know what the others are doing but not vice versa)
 - ③ Knowledge-spillovers
- Understanding peer effects is important. If there is an externality the market will not optimally allocate workers

イロト イポト イヨト イヨト

- Mas and Moretti (2009) investigate peer effects among 394 super-market cashiers from 6 stores
- If a cashier works slowly customers can choose another line
- Scanner data allow them to observe individual level productivity: number of items scanned per second
- They relate ten-minute changes in each cashier's productivity to changes in the average permanent productivity of co-workers
- Average permanent productivity of co-workers varies because worker shifts do not perfectly overlap

Supermarket Cashiers

E

イロト イロト イヨト イヨト

• They estimate the following regression model:

$$y_{itcs} = heta_i + eta \overline{ heta}_{-itcs} + \pi \ \# \ workers_{tcs}$$

+ $au \ register \ location \ FE_{ics} + \gamma \ time \ * \ day \ * \ store \ FE_{tds} + e_{itcs}$

- where i indexes a worker, t time (10-minute interval), c calender date, s store
- θ_i measures permanent productivity of worker i
- $\overline{\theta}_{-itcs}$ measures average productivity of co-workers (leave-out mean)
- They take first differences to estimate:

$$\Delta y_{itcs} = \alpha + \beta \Delta \overline{\theta}_{-itcs} + \pi \ \Delta \ \# \ workers_{tcs} + e_{itcs}$$

イロト イポト イヨト イヨト

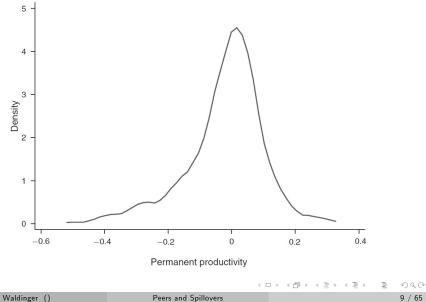
Estimation Details

- To calculate $\overline{\theta}_{-itcs}$ they need unbiased estimates of all θ_i
- Estimation Steps:
 - 1 To get these they estimate the following regression model:

 $y_{itcs} = \theta_i + M' \varphi_{Ci} + \pi \# workers_{tcs} + \tau$ register location $FE_{ics} + \gamma$ time * day * store $FE_{tds} + e_{itcs}$

- where $\varphi_{\rm Ci}$ is a very large set of dummy variables: one for every possible combination of coworker composition
- For example, one dummy for every instance worker 1 works with workers 2,3,4 and another dummy for every instance 1 works with 2,9, and 12
- 2) take the estimated $heta_i$'s and calculate $\overline{ heta}_{-itcs}$ for every worker and shift
- 3 Estimate regression equation (2) (previous slide)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙


Descriptive Statistics

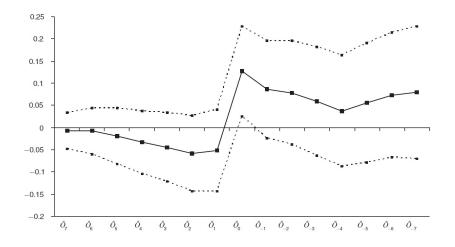
	Store # 1	Store # 2	Store # 3	Store # 4	Store # 5	Store # 6	All stores
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Share of ten-minute interval	0.67	0.61	0.64	0.69	0.68	0.60	0.65
that checkers are transacting	[0.32]	[0.25]	[0.28]	[0.26]	[0.24]	[0.26]	[0.27]
Minutes per customer	1.4	1.2	1.6	1.3	1.4	1.4	1.4
	[1.0]	[1.1]	[1.1]	[1.1]	[0.86]	[0.91]	[1.0]
Productivity in ten-minute	0.18	0.16	0.17	0.16	0.18	0.20	0.17
intervals	[0.09]	[0.07]	[0.08]	[0.07]	[0.07]	[0.08]	[0.08]
Checkers on duty in ten-	5.8	5.9	4.7	7.7	8.3	7.0	6.9
minute intervals	[1.9]	[1.6]	[1.7]	[2.1]	[2.4]	[2.3]	[2.4]
Estimated individual fixed effects	[0.07]	[0.12]	[0.08]	[0.08]	[0.09]	[0.09]	[0.09]
Average coworker permanent productivity	[0.04]	[0.06]	[0.04]	[0.03]	[0.04]	[0.04]	[0.04]
Change in coworker permanent productivity	[0.02]	[0.03]	[0.03]	[0.02]	[0.02]	[0.02]	[0.02]

Ξ

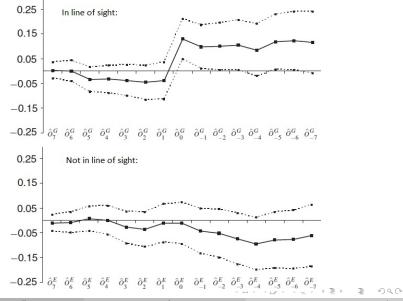
<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Permanent Productivity Differs Across Workers

10% Increase in Co-Worker Quality Increases Prod. by 1.5%


	(1)	(2)	(3)	(4)
Δ Average coworker permanent productivity	0.15 (0.02)	0.15 (0.02)	0.13 (0.03)	-0.03 (0.03)
Δ Average coworker permanent productivity \times positive Δ indicator				0.24 (0.05)
Positive Δ indicator				0.004 (0.001)
Entry of above average productivity worker				
Exit of an above average productivity worker				
Observations	1,718,052	1,718,052	823,274	1,718,052
Additional controls?		Yes		
No net change in number of workers from $t - 1$ to t ?			Yes	

Column (4) indicates that increases in worker quality (as opposed to decreases) have particularly significant effects


Waldinger ()

10 / 65

Effect of a High-Productivity Worker Starting at t=0

Co-Workers Only Affect Workers Who are in Line of Sight

Localized Spillovers Among Academics

- In Waldinger (2012) I analyze localized peer effects among university scientists.
- Estimating spillovers among academics is challenging:
 - Selection of scientists
 - ② Omitted variables
 - ③ Measurement error
- I therefore use the dismissal of scientists in Nazi Germany as an exogenous source of variation that affected:
 - the number of peers
 - the quality of peers

	Phy	sics	Chemistry		Mathematics		
Year of dismissal	Number of dismissals	% of all physicists in 1933	Number of dismissals	% of all chemists in 1933	Number of dismissals	% of all mathematicians in 1933	
1933	33	11.5	50	10.7	35	15.6	
1934	6	2.1	11	2.4	6	2.7	
1935	4	1.4	5	1.1	5	2.2	
1936	1	0.3	7	1.5	1	0-4	
1937	1	0.3	3	0.6	2	0.9	
1938	1	0.3	4	0.9	1	0.4	
1939	1	0.3	2	0.4	1	0.4	
1940	1	0.3	0	0.0	1	0.4	
1933-1934	39	13.6	61	13-1	41	18-3	

TABLE 1 Number of dismissed scientists across different subjects

3

イロト イロト イヨト イヨト

Dismissal Across Different Universities

	Physics					
	Scien- Dismissed tists 1933–1934			Dismissal induced ∆ to department		
University	1933	No.	%	quality		
Aachen TU	3	0	0	0		
Berlin	38	8	21.1	-		
Berlin TU	21	б	28.6	-		
Bonn	12	1	8-3	+		
Braunschweig TU	4	0	0	0		
Breslau	12	2	16.7	+		
Breslau TU	1	0	0	0		
Darmstadt TU	9	1	11-1	+		
Dresden TU	6	1	16-7	-		
Erlangen	4	0	0	0		
Frankfurt	12	1	8-3	_		
Freiburg	8	0	0	0		
Giessen	5	1	20.0	-		
Göttingen	21	9	42.9	-		
Greifswald	6	0	0	0		
Halle	4	0	0	0		
Hamburg	11	2	18-2	+		
Heidelberg	8	0	0	0		
Jena	13	1	7.7	+		
Karlsruhe TU	8	0	0	0		

Waldinger ()

クへで 15 / 65

Ξ

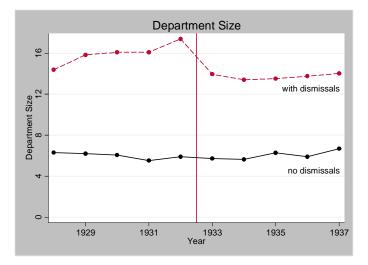
イロト イロト イヨト イヨト

Dismissal Across Different Universities

Kiel	8	1	12.5	_
Köln	8	1	12.5	+
Königsberg	8	0	0	0
Leipzig	11	2	18.2	+
Marburg	6	0	0	0
München	12	3	25.0	+
München TU	10	1	10	+
Münster	5	0	0	0
Rostock	3	0	0	0
Stuttgart TU	5	0	0	0
Tübingen	2	0	0	0
Würzburg	3	0	0	0

Ξ

《曰》 《圖》 《臣》 《臣》

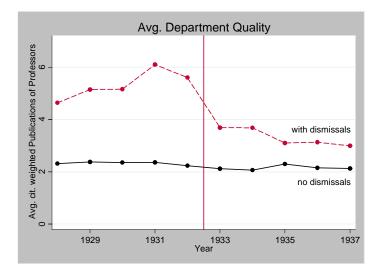

Summary Statistics Dismissed vs. Stayers

	Physics				
				nissed 3–1934	
	A11	Stayers	No.	% Loss	
Researchers (beginning of 1933)	287	248	39	13.6	
Researchers (beginning of 1933)	287	248	39	13.6	
No. of chaired professors	109	97	12	11.0	
Average age (1933)	49.5	50.2	45.1	_	
No. of Nobel Laureates	15	9	6	40.0	
Publications 1925-1932					
Average publications	0.47	0.43	0.71	20.5	
Average publications	5.10	3.53	14.79	39.4	
(citation weighted)					
% co-authored	32.0	32.1	31.4	_	
% co-authored with faculty	11.1	10.3	14.5	_	
(with dismissed)	(3.1)	(2.0)	(8.1)		
% co-authored with faculty (same uni)	3.7	2.9	7.4	_	
(with dismissed)	(1.5)	(0.5)	(5.9)		

Э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Effect on Department Size


Waldinger ()

୬ ୯.୯ 18 / 65

문 문 문

-

Effect on Peer Quality

୬ ୯.୦ 19 / 65

프 > 프

Estimating Localized Peer Effects

• OLS model to estimate peer effects among university researchers:

$$\begin{split} \# \mathsf{Pub}_{idt} &= \beta_1 + \beta_2 (\mathsf{Avg. Peer Quality})_{dt-1} + \beta_3 (\# \text{ of Peers})_{dt-1} \\ + \beta_4 \mathsf{Age Dummies}_{idt} + \beta_5 \mathsf{YearFE}_t + \beta_6 \mathsf{Dep.FE}_d + \beta_7 \mathsf{Indiv.FE}_i + \varepsilon_{idt} \end{split}$$

- Using the dismissals to instrument for the two endogenous variables. The 2 first stages are:

 - 2 # of Peers_{dt} = $\delta_1 + \delta_2$ (Dismissal induced \Downarrow Peer Quality)_{dt} + δ_3 (# Dismissed) + δ_4 Age Dummies_{idt} + δ_5 YearFE_t + δ_6 Dep.FE_d + δ_7 Indiv.FE_i + ε_{idt}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

First Stages

	(1)	(2)	
	Physics		
Dependent variable	Peer quality	Department size	
Dismissal induced fall	-0.644**	-0.147	
in peer quality	(0.099)	(0.130)	
Number dismissed	0.017	-0.570**	
	(0.098)	(0.117)	
Age dummies	Yes	Yes	
Year dummies	Yes	Yes	
Individual FE	Yes	Yes	
Observations	2261	2261	
No. of researchers	258	258	
R ²	0.59	0.90	
F—Test on instruments	81.9	103-10	
Cragg-Donald EV statistic	1	2.8	

Waldinger ()

21 / 65

OLS and IV Results

	(1)	(2)	(3)	(4)
	OLS	IV	OLS	IV
		Phy	ysics	
Dependent variable:	Publi- cations	Publi- cations	Cit. weigt. Pubs.	Cit. weigt Pubs.
Peer quality	0.004	-0.054	-0.048	-0.488
	(0.005)	(0.035)	(0.075)	(0-496)
Department size	-0.007	0.035	-0.177**	0.016
	(0.004)	(0.034)	(0.062)	(0-553)
Age dummies	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes
Observations	2261	2261	2261	2261
No. of researchers	258	258	258	258
R ²	0.39		0.25	
Cragg–Donald EV Stat.		12.79		12.79

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Are We Considering the Correct Peer Group? Specialization Level Results

	(1)	(2)
	IV	IV
	Phy	ysics
Dependent variable	Publications	Cit. weighted Publications
Specialization peer quality	-0.021	-0.410
	(0.029)	(0.581)
No. of specialization peers	-0.021	-0.727
	(0.029)	(0.482)
Age dummies	Yes	Yes
Year dummies	Yes	Yes
Individual FE	Yes	Yes
Observations	2257	2257
No. of researchers	256	256
Cragg–Donald EV Stat.	81-80	81.80

Waldinger ()

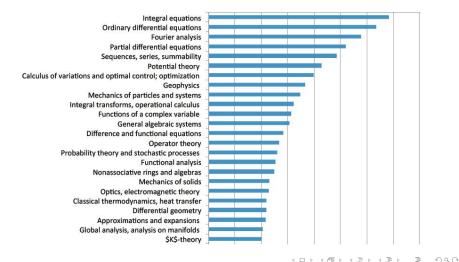
Э

Do High Quality Peers Matter?

	IV	IV							
	P	hysics							
Dependent variable	Publi- cations	Cit. weighted publications							
Number of peers	· · · · ·	(0.198)							
First-stage F-statistic	195-5	195-5							
Number of top 50th percentile peers	((0.142)							
First-stage F-statistic	241.1	241.1							
Number of top 25th percentile peers		-0.637* (0.239)							
First-stage F-statistic	423.7	423-7							
Number of top 10th percentile peers First-stage F-Statistic	-0.011 (0.032) 29.6	-0.695 (0.395) 29.6							
Number of top 5th percentile peers	-0.031 (0.043)	-1.336* (0.626)							
First-stage F-statistic	201-6	201.6							
Age dummies	Yes	Yes							
Year dummies	Yes	Yes							
Individual FE	Yes	Yes							
			$\rightarrow \equiv \rightarrow \rightarrow$	$\forall \equiv F \neq \equiv F$	$(+\pm) \to (\pm) \to (\pm)$	(《문》 《문》 문 3	- 小田 - 小田 - うらく	- 4 臣 ト 4 臣 ト 一臣 - のへの	・ モ ト * 王 ト 王 うくぐ

Waldinger ()

24 / 65

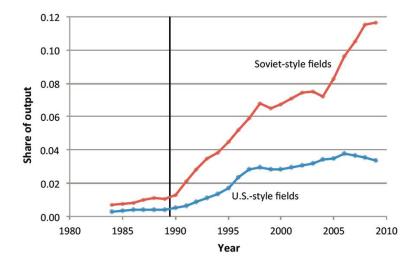

Spillovers in Ideas Space Among Academics

- Borjas and Doran (2012) study the arrival of Soviet mathematicians in the United States after the collapse of the Soviet union.
- Their main regressions do not use geographic variation (which would be endogenous) but variation at the level of 63 research fields.
- On average Soviet and US mathematicians specialized in different fields of mathematics.
- US mathematicians who worked in more "Soviet" fields therefore were more affected by the potential influx of Soviet mathematicians after the collapse than US mathematicians who worked in different fields.
- Note: they basically look at the reduced form: How are US mathematicians affects by a *potential* influx of Soviet mathematicians

イロト イポト イヨト

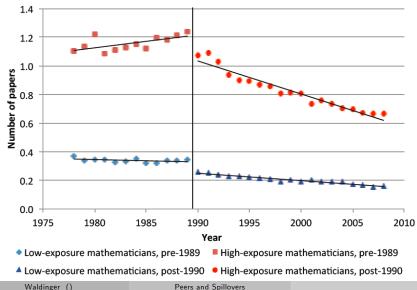
US Versus Soviet Mathematics

Ratio of Soviet papers to American papers, by field, 1984-89



Soviet Emigres to the US Are High Quality Mathematicians

		Group of mat	hematicians:	
Variable:	Americans	Soviet émigrés to US	Soviet émigrés elsewhere	All other Soviets
Number of mathematicians	29392	336	715	11173
Papers published, 1978-1991				
Mean papers per mathematician	6.7	17.8	14.6	8.1
Median papers	3.0	13.0	10.0	5.0
Maximum number of papers	232.0	104.0	152.0	180.0
Papers published, 1992-2008 Mean papers per mathematician	6.8	27.2	28.8	7.6
Median papers	1.0	21.0	22.0	1.0
Maximum number of papers	768.0	128.0	317.0	311.0


イロト イポト イヨト イヨト

Share of Output Published By Soviet Emigres in the US

Waldinger ()	Peers and Spillovers	28 / 65
--------------	----------------------	---------

Productivity of US Mathematicians Working in Soviet vs. Other Fields

• They estimate the effect of potential Soviet immigration on the productivity of American mathematicians as follows:

 $y_{it} = IndvidualFE_i + YearFE_t + X_i(t) + \theta(Post92 * Index_i) + \varepsilon_i$

- Index measures the overlap of an individual's research fields with the pre-1992 research fields of all Soviet mathematicians (independently of whether they migrated to the US)
- Standard errors are clustered at the individual level

▲ロト ▲圖ト ▲ ヨト ▲ ヨト ---

Main Results: The Effect of Emigres on the Productivity of US Mathematicians

		Mathematicians predominantly in U.S.		naticians s in U.S.
Specification/regressor	Number of papers	Number of citations	Number of papers	Number of Citations
A. Author-year regressions	8			9
Correlation coefficient	-0.133	-19.577	-0.116	-16.298
	(0.036)	(1.576)	(0.034)	(1.540)
Index of intensity	-0.047	-14.845	-0.042	-12.293
The second state of the second state	(0.028)	(1.293)	(0.027)	(1.261)
Index of similarity	-1.523	-69.155	-1.419	-58.494
	(0.113)	(4.645)	(0.108)	(4.655)

イロト イポト イヨト イヨト

Does the Inflow Lead to Exit of Exposed Mathematicians?

Impact of Soviet supply shock on probability of "retirement" from publishing (Cox proportional hazard models)

	Measure of overlap				
Sample	Correlation coefficient	Index of intensity	Index of similarity		
All pre-existing mathematicians	0.410	0.230	5.571		
	(0.090)	(0.084)	(0.298)		
Less than 10 years of experience	1.099	0.653	10.340		
	(0.229)	(0.176)	(0.962)		
10-19 years of experience	0.166	0.299	0.232		
	(0.192)	(0.175)	(0.645)		
At least 20 years of experience	0.099	0.101	1.433		
	(0.181)	(0.183)	(0.491)		

<ロト < 同ト < 三ト < 三ト : 三 · ののの</p>

ldinger	()

Do Exposed Scientists Move To a Lower Ranked University?

	Measure of overlap/Dependent variable					
	Correlation coefficient		Index of intensity		Index of similarity	
Sample/regressor	Moved	Δ Quality	Moved	Δ Quality	Moved	Δ Quality
A. All mathematicians		1				
Institution hired émigré	0.046	-2.382	0.046	-2.383	0.047	-2.385
	(0.013)	(.122)	(0.013)	(.122)	(0.013)	(.122)
Overlap index	0.172	-0.415	0.158	-0.282	0.321	-1.329
	(0.025)	(0.308)	(0.022)	(0.252)	(0.066)	(.997)

3

イロト イポト イヨト イヨト

Summary Peer Effects in the Workplace

- The well-identifed literature that estimates peer effects within firms usually finds:
 - positive effects for low-skilled workers
 - 0 or very small effects for high-skilled workers
- See also recent paper by Cornelissen, Dustmann, and Schoenberg (2015) who confirm these findings
- What could explain this?
 - Is the effect of peer pressure less important for high-skilled individuals?
 - Are localized knowledge spillovers less important than economists think?
- Note: 0 effects for high-skilled workers does not mean that hiring them makes no difference!
 - They affect colleagues in joint production (e.g. publishing or patenting, see Azoulay, Zivin, and Wang 2010, Jaravel, Petkova, and Bell, 2015, Waldinger, 2016b)
 - They affect hiring of other high-quality workers (e.g. Waldinger, 2016a)
 - They affect training of students (e.g. Waldinger, 2010)

Why do we observe something like the Silicon Valley?

And on the other hand something like this?

What Causes Industry Agglomeration?

- A large literature in urban economics analyzes industry agglomeration. Why do we observe agglomeration of industries?
 - 1 Random chance
 - ② Natural advantages
 - Industry-specific spillovers
- Marshall (1890) highlighted the importance of localized industry spillovers because industries share:
 - goods: inputs may be cheaper if other firms in an area also buy them.
 - 2 people: thicker labor markets lead to more productive worker-firm matches; insurance effect for workers and firms (should not affect productivity)
 - 3 ideas ("the mysteries of the trade become no mystery, but are, as it were, in the air.")

イロト イポト イヨト イヨト

Ellison, Glaeser, and Kerr (2010)

- EGK (2010) use coagglomeration patterns of different US manufacturing industries to test for the relative importance of these factors for industry agglomeration.
- They measure coagglomeration of industry *i* with industry *j* using the Ellison and Glaeser (1997) index:

$$\gamma_{ij}^{c} = rac{\Sigma_{m=1}^{M}(s_{mi}-x_m)(s_{mj}-x_m)}{1-\Sigma_{m=1}^{M}x_m^2}$$

- *m* indexes geographical areas
- s_{mi} = share of industry *i*'s employment contained in area *m*.
- x_m = aggregate size of area m (measured as mean employment share in the region across manufacturing industries)
- They also use a second (more complicated) agglomeration metric developed by Duranton and Overman (2005).

イロト イロト イヨト イヨト 二日

Rank	Industry 1	Industry 2	Coagglomeration
Panel	A. EG index using 1987 state total employn	nents	
1	Broadwoven mills, cotton (221)	Yarn and thread mills (228)	0.207
2	Knitting mills (225)	Yarn and thread mills (228)	0.187
3	Broadwoven mills, fiber (222)	Textile finishing (226)	0.178
4	Broadwoven mills, cotton (221)	Broadwoven mills, fiber (222)	0.171
5	Broadwoven mills, fiber (222)	Yarn and thread mills (228)	0.164
6	Handbags (317)	Photographic equipment (386)	0.155
7	Broadwoven mills, wool (223)	Carpets and rugs (227)	0.149
8	Carpets and rugs (227)	Yarn and thread mills (228)	0.142
9	Photographic equipment (386)	Jewelry, silverware, plated ware (391)	0.139
10	Textile finishing (226)	Yarn and thread mills (228)	0.138
11	Broadwoven mills, cotton (221)	Textile finishing (226)	0.137
12	Broadwoven mills, cotton (221)	Carpets and rugs (227)	0.137
13	Broadwoven mills, cotton (221)	Knitting mills (225)	0.136
14	Carpets and rugs (227)	Pulp mills (261)	0.110
15	Jewelry, silverware, plated ware (391)	Costume jewelry and notions (396)	0.107

E

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Estimation Strategy

• Baseline regression:

$$Coagg_{ij} = \alpha + \beta_{NA}Coagg_{ij}^{NA} + \beta_LLaborCorrelation_{ij} + \beta_{IO}InputOutput_{ij} + \beta_TTech_{ij} + \varepsilon_{ij}$$

- Coagg_{ij} measures pairwise coagglomeration between industries *i* and *j*.
- Coagg^{NA}_{ij} = predicted coagglomeration of industries i and j due to natural advantages.
- LaborCorrelation_{ij} = correlation of shares of people in certain occupations across industries *i* and *j*.
- InputOutput_{ij} = max{Input_{ij}, Output_{ji}} where Input_{ij} = max{Input_{i \leftarrow j}, Input_{j ← i}}; Output_{ij} = max{Output_{i ← j}, Output_{j ← i}}
- Tech_{ij} = Scherer's (1984) technology matrix that captures how R&D activity in industry *i* benefit industry *j*.

OLS Results

(1) 0.163	Exclude natural advantages (2)	Separate input & output (3)	Exclude pairs in same SIC2 (4)
0.163	(2)	(3)	(4)
			(+)
(0.017)		0.162 (0.017)	0.172 (0.016)
0.118 (0.011)	0.146 (0.012)	0.114 (0.011)	0.085 (0.012)
0.146 (0.032)	0.149 (0.032)		0.110 (0.022)
		0.106 (0.029)	
		0.093 (0.039)	
0.096 (0.035)	$0.112 \\ (0.035)$	0.079 (0.035)	0.046 (0.019)
0.103 7,381	0.077 7,381	0.110 7,381	0.059 7,000
	0.118 (0.011) 0.146 (0.032) 0.096 (0.035) 0.103	$\begin{array}{cccc} 0.118 & 0.146 \\ (0.011) & (0.012) \\ 0.146 & 0.149 \\ (0.032) & (0.032) \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Reverse causality: coagglomeration may cause more labor, input-output, and ideas flows and not vice-versa.
- Omitted variables: unobserved factors that lead to coagglomeration and are correlated with some of the Marshallian factors (e.g. co-located universities).

 \Rightarrow They use an IV strategy to address these concerns.

- Instruments:
 - input-output and labour patterns of UK industries
 - input-output and labor patterns in US areas where the other industry is rare.

イロト イポト イヨト イヨト

	EG coaggl. index with state total emp.				
	Base OLS	UK IV	US spatial IV		
	(1)	(2)	(3)		
Natural advantages [DV specific]	0.173 (0.016)	0.173 (0.019)	0.171 (0.016)		
Labor correlation	0.083 (0.012)	0.079 (0.060)	0.091 (0.023)		
Input-output	0.122 (0.023)	$0.191 \\ (0.048)$	0.185 (0.036)		
Observations	7,000	7,000	7,000		

VVa	ldinger	. ()

- Natural advantages are important drivers of agglomeration.
- Sharing goods and labour also seems important (both OLS and IV)
- Sharing ideas is significant in the OLS but they do not address endogeneity.

* E > * E >

Identifying Agglomeration Spillovers - Evidence from Large Plant Openings

- Greenstone, Hornbeck, and Moretti (2010) analyze agglomeration spillovers using large plant openings.
- They compare counties that received a new large plant to counties that were considered as alternative site but were not chosen.
- Example: BMW plant in Greenville-Spartanburg, South Carolina:

Summary Statistics Million Dollar Plants

	(1)
Sample MDP openings: ^a	
Across all industries	47
Within same two-digit SIC	16
Across all industries:	
Number of loser counties per winner county:	
1	31
2+	16
Reported year – matched year: ^b	
-2 to -1	20
0	15
1 to 3	12
Reported year of MDP location:	
1981-85	11
1986-89	18
1990–93	18
MDP characteristics, 5 years after opening: ^c	
Output (\$1,000s)	452,801
•	(901,690)
Output, relative to county output 1 year prior	.086
	(.109)
Hours of labor (1,000s)	2,986
	(6,789)

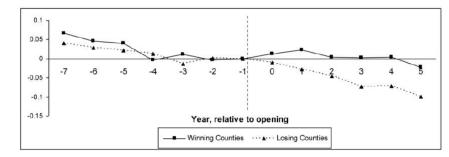
୬ < (~ 46 / 65

Э

イロト イロト イヨト イヨト

Summary Statistics Winning vs. Losing Counties

	ALL PLANTS					
	Winning Counties (1)	Losing Counties (2)	All U.S. Counties (3)	<i>t</i> -Statistic (Col. 1 – Col. 2) (4)	<i>t</i> -Statistic (Col. 1 – Col. 3) (5)	
					A. County Cl	
No. of counties	47	73				
Total per capita earnings (\$)	17,418	20,628	11,259	-2.05	5.79	
% change, over last 6 years	.074	.096	.037	81	1.67	
Population	322,745	447,876	82,381	-1.61	4.33	
% change, over last 6 years	.102	.051	.036	2.06	3.22	
Employment-population ratio	.535	.579	.461	-1.41	3.49	
Change, over last 6 years	.041	.047	.023	68	2.54	
Manufacturing labor share	.314	.251	.252	2.35	3.12	
Change, over last 6 years	014	031	008	1.52	64	
					B. Plant Cha	
No. of sample plants	18.8	25.6	7.98	-1.35	3.02	
Output (\$1,000s)	190,039	181,454	123, 187	.25	2.14	
% change, over last 6 years	.082	.082	.118	.01	97	
Hours of labor (1,000s)	1,508	1,168	877	1.52	2.43	
% change, over last 6 years	.122	.081	.115	.81	.14	


Waldinger ()

Estimation Equations

Mean shifts: 1 $\ln(Y_{pijt}) = \beta_1 \ln(L_{pijt}) + \beta_2 \ln(K_{pijt}^B) + \beta_3 \ln(K_{pijt}^E) + \beta_4 \ln(M_{pijt})$ $+\delta_1$ WinnerCounty_{pi} $+\kappa_1 Post_{it}$ $+\theta_1 WinnerCounty_{pi} * Post_{it}$ +PlantFE_p + Industry * TimeFE_{it} + CaseFE_i + ε_{piit} 2 Allow for plant specific trends and trend breaks: $\ln(Y_{pijt}) = \beta_1 \ln(L_{pijt}) + \beta_2 \ln(K_{pijt}^B) + \beta_3 \ln(K_{pijt}^E) + \beta_4 \ln(M_{pijt})$ $+\delta_1 WinnerCounty_{pi} + \psi Trend_{it} + \Omega [Trend_{it} \times Winner_{pi}]$ $+\kappa_1 Post_{it} + \gamma [Trend_{it} \times Post_{it}]$ $+\theta_1 WinnerCounty_{pi} * Post_{it}$ $+\theta_2$ | Trend_{it} × WinnerCounty_{pi} × Post_{it} | $+PlantFE_{p} + Industry * TimeFE_{it} + CaseFE_{i} + \varepsilon_{piit}$ ▲ロト ▲暦ト ▲ヨト ▲ヨト 三ヨ - のへ⊙

Graphical Evidence: Incumbent Firms' Productivity

All Industries: Winners vs. Losers

< ∃ >

-

Э

Regression Results: Effect on Incumbents' TFP

	WINNERS	L COUNTIES: MDP WINNERS – MDP LOSERS MDP COUNTIES: M WINNERS – MD LOSERS LOSERS		- MDP	ALL COUNTIES Random Winners	
	(1)	(2)	(3)	(4)	(5)	
			A. Model	1		
Mean shift	.0442*	.0435*	.0524**	.0477**	- 0.0496***	
	(.0233)	(.0235)	(.0225)	(.0231)	(.0174)	
				[\$170 m]		
R^2	.9811	.9812	.9812	.9860	~0.98	
Observations (plant by						
year)	418,064	418,064	50,842	28,732	~400,000	
			B. Model	2		
Effect after 5 years	.1301**	.1324**	.1355***	.1203**	0296	
	(.0533)	(.0529)	(.0477)	(.0517)	(.0434)	
				[\$429 m]		
Level change	.0277	.0251	.0255	.0290	.0073	
	(.0241)	(.0221)	(.0186)	(.0210)	(.0223)	
Trend break	.0171*	.0179**	.0183**	.0152*	-0.0062	
	(.0091)	(.0088)	(.0078)	(.0079)	(.0063)	
Pre-trend	0057	0058	0048	0044	0048	
	(.0046)	(.0046)	(.0046)	(.0044)	(.0040)	
R^2	.9811	.9812	.9813	.9861	~.98	
Observations (plant by						
year)	418,064	418,064	50,842	28,732	~400,000	
Plant and industry by						
year fixed effects	Yes	Yes	Yes	Yes	Yes	
Case fixed effects	No	Yes	Yes	Yes	NA	
Years included	All	All	All	$-7 \le \tau \le 5$	All	

Waldinger ()

୬ < (~ 50 / 65

Э

Regression Results: Effect on Other Outcomes

	Output (1)	Worker Hours (2)	Machinery Capital (3)	Building Capital (4)	Materials (5)
Model 1: mean shift	.1200***	.0789**	.0401	.1327*	.0911***
	(.0354)	(.0357)	(.0348)	(.0691)	(.0302)
Model 2: after 5 years	.0826*	.0562	0089	0077	.0509
	(.0478)	(.0469)	(.0300)	(.0375)	(.0541)

Э

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Where Do The TFP Increases Come From? - Looking at Interactions

• To understand how new firms affect TFP of incumbent firms they interact their Winner*Post coefficient with measures for the Marshallian factors.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
CPS worker							
transitions	.0701 ***						.0374
	(.0237)						(.0260
Citation pattern	(.0545***					.0256
oration pattern		(.0192)					(.0208
Technology		(.0152)					(.0200
			.0320*				.0501
input							
			(.0173)				(.0421)
Technology				0500***			0004
output				.0596 * * *			.0004
				(.0216)			(.0434)
Manufacturing							
input					.0060		0473
-					(.0123)		(.0289)
Manufacturing							
output						.0150	0145
r'						(.0196)	(.0230
R^2	.9852	.9852	.9851	.9852	.9851	.9852	.9853
Observations	23,397	23,397	23,397	23,397	23,397	23,397	23,397
JUSCI VALIONS	23,397	25,597	23,397	25,597	25,597	25,597	25,597

Where Do The TFP Increases Come From? - Looking at Interactions

- Spillovers seem to occur between firms that share workers and ideas (measured by patent citations or R&D flows).
- Input and output flows between firms seem to be less important (this is quite different from the Ellison, Glaeser, and Kerr results).
- Broad conclusion from this literature: spillovers and localized knowledge flows are quite important for firms.

Do Firms Necessarily Benefit From Other Firms' R&D?

Knowledge Spillovers vs. Product Market Rivalry

- Many previous papers have found that knowledge spillovers seem to be important among firms.
- Does R&D spending of other firms necessarily benefit similar firms?
- Bloom, Schankerman, and Van Reenen (2012) investigate two potentially opposite effects of R&D:
 - Technology spillovers
 - Product market rivalry
- Their main analysis does not consider spillovers in geographic space. Instead, they exploit that firms differ in how much they overlap according to their
 - Technology space (i.e. patents)
 - 2 Product market space (sales activity across 4-digit industries)

イロト イポト イヨト イヨト

Summary of Model Predictions

(1)	(2)	(3)	(7)	(8)	(9)
			Tech	nology Spillover	s
Equation	Comparative static prediction	Empirical counterpart	No Product Market Rivalry	Strategic Complements	Strategic Substitutes
Market value	∂V₀/∂r,	Market value with SPILLTECH	Positive	Positive	Positive
Market value	$\partial V_0/\partial r_m$	Market value with SPILLSIC	Zero	Negative	Negative
Patents (or productivity)	$\partial k_0/\partial r_\tau$	Patents with SPILLTECH	Positive	Positive	Positive
Patents (or productivity)	$\partial k_0 / \partial r_m$	Patents with SPILLSIC	Zero	Zero	Zero
R&D	$\partial r_0/\partial r_t$	R&D with SPILLTECH	Ambiguous	Ambiguous	Ambiguous
R&D	$\partial r_0/\partial r_m$	R&D with SPILLSIC	Zero	Positive	Negative

 ∂r_{τ} =changes in R&D expenditure by firms sharing technology space ∂r_m =changes in R&D expenditure by firms sharing product space,

Waldinger ()

Measuring Technology and Product Market Spillovers

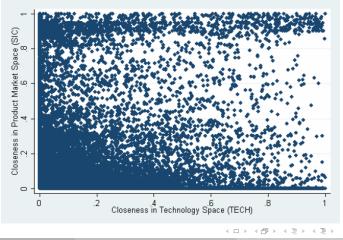
• Following Jaffe (1986) they measure technology spillovers flowing to firm *i* in year *t* as:

$$SPILLTECH_{it} = \sum_{j
eq i} TECH_{ij}G_{jt}$$

- Where:
 - *TECH_{ij}* measures the uncentered correlation between the patenting activity of firm *i* and firm *j* ranging from 0 to 1. $TECH_{ij} = \frac{(T_iT_j')}{(T_iT_i)^{1/2}(T_jT_j)^{1/2}}$ where $T_i = (T_{i1}, T_{i2}, ..., T_{i426})$ measures share of patenting activity of firm *i* in 426 USPTO technology classes.

• *G_{jt}* is firm *j*'s stock of R&D

• Similarly product market proximity is defined using the overlap of sales that are classified within 597 industries (firms sell on avg. in 5.2 industries):


$$SPILLSIC_{it} = \sum_{j \neq i} SIC_{ij}G_{jt}$$

Waldinger ()

イロト イポト イヨト イヨト 二日

Within Firm Variation in Spillover Measures

• To be able to separately identify the effects of technology spillovers and product market rivalry they need within-firm variation in the two measures:

Waldinger ()

Examples

	Correlation	IBM	Apple	Motorola	Intel
IBM	SIC Compustat	1	0.65	0.01	0.01
	SIC BVD	1	0.55	0.02	0.07
	TECH	1	0.64	0.46	0.76
Apple	SIC Compustat		1	0.02	0.00
	SIC BVD		1	0.01	0.03
	TECH		1	0.17	0.47
Motorola	SIC Compustat			1	0.34
	SIC BVD			1	0.47
	TECH			1	0.46
Intel	SIC Compustat				1
	SIC BVD				1
	TECH				1

3

《口》 《圖》 《臣》 《臣》

Addressing the Endogeneity of R&D

• They are interested in estimating (for different outcomes):

 $\begin{aligned} & \ln Outcome_{it} = \phi(Own \ R\&D \ Stock / Non - R\&D \ assets)_{it-1} \\ & +\gamma_2 \ln SPILLTECH_{it-1} + \gamma_3 \ln SPILLSIC_{it-1} + \beta_4 X_{it} + u_{it} \end{aligned}$

- They model $u_{it} = firmFE_i + YearFE_t + v_{it}$
- R&D expenditure (and therefore *SPILLTECH* and *SPILLSIC*) is likely endogenous if new technological opportunities lead all firms in an area to invest more in R&D.
- They address this concern by instrumenting for R&D expenditures using tax induced changes to the user cost of R&D. User costs are different because
 - different states have different levels of R&D tax credits and corporation tax
 - Federal rules affect different firms differently

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Specification:	(1) OLS	(2) OLS	(5) OLS	(6) IV 2 nd stage
Distance measure:	Jaffe	Jaffe	Mahalanobis	Jaffe
Ln(SPILLTECH+1)	-0.064	0.381	0.903	1.079
	(0.013)	(0.113)	(0.105)	(0.192)
Ln(SPILLSIC _{>1})	0.053	-0.083	-0.136	-0.235
Contraction and Contraction	(0.007)	(0.032)	(0.031)	(0.109)
Ln(R&D Stock/Capital Stock),-1	0.859	0.806	0.835	0.831
• •	(0.154)	(0.197)	(0.198)	(0.197)
	· ·			1st stage F-tests
Ln(SPILLTECH ₁)				112.5
Ln(SPILLSIC ₁)				42.8
Firm fixed effects	No	Yes	Yes	Yes
No. Observations	9,944	9,944	9,944	9,944

Ξ

イロト イロト イヨト イヨト

Results: Patenting

Dep Var: Cite weighted Patents	(1)	(2)	(4)	(5)	
Specification:	Neg. Bin.	Neg. Bin.	Neg. Bin.	Neg. Bin. IV 2nd stage	
Distance measure:	Jaffe	Jaffe	Mahalanobis	Jaffe	
Ln(SPILLTECH),-1	0.518	0.468	0.530	0.407	
	(0.096)	(0.080)	(0.070)	(0.059)	
Ln(SPILLSIC),-1	0.045	0.056	0.053	0.037	
	(0.042)	(0.037)	(0.037)	(0.028)	
Ln(R&D Stock)+1	0.500	0.222	0.112	0.071	
	(0.048)	(0.053)	(0.039)	(0.020)	
Ln(Patents),1			0.425	0.423	
			(0.020)	(0.020)	
Pre-sample fixed effect		0.538	0.276	0.301	
		(0.046)	(0.033)	(0.032)	
				IV 1" stage F-tests	
Ln(SPILLTECH),1				55.3	
Ln(SPILLSIC),1				15.0	
Firm fixed effects	No	Yes	Yes	Yes	
No. Observations	9,023	9,023	9,023	9,023	

Ξ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

- To investigate whether geography matters for knowledge spillovers and product market competition they construct proximity variables that further consider geography (50 U.S. states plus locations abroad).
- They then reestimate their model by including both measures.

The Role of Geography

Danan dant Variahlar	(1) Tabiais O	(2) Cite Weighted Betente	(3) Real Sales	(4) B & D /S = 1 = =
Dependent Variable:	Tobin's Q	Cite Weighted Patents	Real Sales	R&D/Sales
C. Geographically Based M	easure of Spill	overs		
$ln(SPILLTECH^{GEOG})_{t-1}$	1.314	0.037	0.117	
	(0.176)	(0.053)	(0.066)	
$\ln(SPILLTECH)_{t-1}$	-0.559	0.391	0.101	
	(0.163)	(0.069)	(0.060)	
$\ln(SPILLSIC^{GEOG})_{t-1}$	0.110			-0.041
	(0.078)			(0.094)
$\ln(SPILLSIC)_{t-1}$	-0.175			0.135
	(0.062)			(0.086)
Observations	9,944	9,122	10,018	8,579

Ξ

イロト イロト イヨト イヨト

- They give a detailed summary of their results and how they conform with the model predictions (they do very well!).
- Very nice link of theory and empirics.
- An important insight if we think about spillovers: competition effects may affect the interpretation of estimated effects (depending on the context of the paper, of course).
- Geograpy seems to matter for Tobin's Q and sales but not not for patents (where we think that knowledge spillovers are particularly important).

- 4 同 1 - 4 回 1 - 4 回 1

Bringing All Results Together

- The well-identified literature that estimates localized spillovers *within* firms usually finds:
 - positive effects for low-skilled workers
 - 0 or very small effects for high-skilled workers
- The literature that analyzes localized spillovers *across* firms usually finds:
 - positive effects but they are driven by different factors
- What could drive these differences?
 - Firm level studies mostly estimate spillovers encompassing many different channels (labor sharing, input-output linkages, knowledge spillovers) but studies on high-skilled individuals focus much more on knowledge spillovers, only.
 - Firm level studies do not have "quasi-experimental" variation that can isolate effects of different spillover channels.
 - Knowledge that is valuable for firms is very different from academic knowledge: academics try to disseminate their findings to a broad public but firms benefit from exclusive use of knowledge.