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Topics Covered in Lecture

1 Sharp RD.
2 Fuzzy RD.
3 Practical Tips for Running RD Models.
4 Example Fuzzy RD: Angrist & Lavy (1999) - Maimonides Rule.
5 Regression Kink Design (very briefly).
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Regression Discontinuity Design

Regression discontinuity research designs exploit the fact that some
rules are quite arbitrary and therefore provide good quasi-experiments
when you compare people (or cities, firms, countries,...) who are just
affected by the rule with people who are just not affected by the rule.

There are 2 types of RD designs:
1 Sharp RD: treatment is a deterministic function of a covariate X.
2 Fuzzy RD: exploits discontinuities in the probability of treatment
conditional on a covariate X (the discontinuity is then used as an IV).

RD captures the causal effect by distinguishing the nonlinear and
discontinuous function, 1(Xi ≥ Xo ) from the smooth function f (Xi ).
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Example Linear RD
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Sharp RD

In Sharp RD designs you exploit that treatment status is a
deterministic and discontinuous function of a covariate xi .

Di = {
1 if xi ≥ xo
0 if xi < xo

xo is a known threshold or cutoff

Once we know xi we know Di .

As highlighted by Imbens and Lemieux (2008) there is no value of xi
at which you observe both treatment and control observations.
→ the method relies on extrapolation across covariate values.

For this reason we cannot be agnostic about regression functional
form in RD.
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Formalizing Sharp RD

Suppose that in addition to the assignment mechanism above,
potential outcomes can be described by a linear, constant effects
model:

E [Y0i |Xi ] = α+ βXi

Y1i = Y0i + ρ

This leads to the regression:

Yi = α+ βXi + ρDi + ηi

The key difference between this regression and regressions we have
investigated in previous lectures is that Di is not only correlated with
Xi but it is a deterministic function of Xi .
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Key Identifying Assumption

Key identifying assumption:

E [Y0i |Xi ] and E [Y1i |Xi ] are continuos in Xi at X0.

This means that all other unobserved determinants of Y are
continuously related to the running variable X .

This allows us to use average outcomes of units just below the cutoff
as a valid counterfactual for units right above the cutoff.

This assumption cannot be directly tested. But there are some tests
which give suggestive evidence whether the assumption is satisfied
(see below).
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Sharp Regression Discontinuity - Nonlinear Case

Sometimes the trend relation E [Y0i |xi ] is nonlinear.
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Sharp Regression Discontinuity - Nonlinear Case

Suppose the nonlinear relationship is E [Y0i |xi ] = f (Xi ) for some
reasonably smooth function f (Xi ).

In that case we can construct RD estimates by fitting:

Yi = f (xi ) + ρDi + ηi

There are 2 ways of approximating f (xi ):
1 Use a nonparametric kernel method (see more below).
2 Use a pth order polynomial: i.e. estimate:
Yi = α+ β1xi + β2x

2
i + ...+ βpx

p
i + ρDi + ηi (1)

During the following introduction we will focus on the pth order
polynomial approach but will discuss the other approach below.
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Different Polynomials on the 2 Sides of the Discontinuity

We can generalize the function f (xi ) by allowing the xi terms to differ
on both sides of the threshold by including them both individually and
interacting them with Di .
As Lee and Lemieux (2010) note, allowing different functions on both
sides of the discontinuity should be the main results in an RD paper
(as otherwise we use values from both sides of the cutoff the estimate
the function on each side).
In that case we have:

E [Y0i |Xi ] = α+ β01X̃i + β02X̃
2
i + ...+ β0pX̃

p
i

E [Y1i |Xi ] = α+ ρ+ β11X̃i + β12X̃
2
i + ...+ β1pX̃

p
i

where X̃i = Xi − X0
Centering at X0 ensures that the treatment effect at Xi = X0 is the
coeffi cient on Di in a regression model with interaction terms
(because you do not have to add values of the Di interacted with X
to get the treatment effect at X0).
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Different Polynomials on the 2 Sides of the Discontinuity

To derive a regression model that can be used to estimate the causal
effect we use the fact that Di is a deterministic function of Xi :

E [Yi |Xi ] = E [Y0i |Xi ] + (E [Y1i |Xi ]− E [Y0i |Xi ])Di

The regression model which you estimate is then:

Yi = α+ β01x̃i + β02x̃
2
i + ...+ β0p x̃

p
i

+ρDi + β∗1Di x̃i + β∗2Di x̃
2
i + ...+ β∗pDi x̃

p
i + ηi (2)

where β∗1 = β11 − β01, β
∗
2 = β21 − β21 and β∗p = β1p − β0p

Equation (1) above is a special case of (2) with β∗1 = β∗2 = β∗p = 0.

The treatment effect at Xo is ρ.

The treatment effect at Xi − X0 = c > 0 is: ρ+ β∗1c + β∗2c
2 + ...+

β∗pc
p
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Example Sharp RD: Lee (2008) Incumbency Effects

Lee (2008) uses a sharp RD design to estimate the probability that
the incumbent wins an election.

A large political science literature suggests that incumbents may use
privileges and resources of offi ce to gain an advantage over potential
challengers.

An OLS regression of incumbency status on election success is likely
to be biased because of unobserved differences. Incumbents have
already won an election so they may just be better.

Lee analyzes the incumbency effect using Democratic incumbents for
US congressional elections.

He analyzes the probability of winning the election in year t+1 by
comparing candidates who just won compared to candidates who just
lost the election in year t.
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The Effect or Winning the Previous Election on The
Probability of Winning Current Election
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Internal Validity of RD Estimates

The validity of RD estimates depends crucially on the assumption
that the polynomials provide an adequate representation of E [Y0i |Xi ].
If not what looks like a jump may simply be a non-linearity in f (Xi )
that the polynomials have not accounted for.
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Fuzzy RD

Fuzzy RD exploits discontinuities in the probability of treatment
conditional on a covariate.
The discontinuity becomes an instrumental variable for treatment
status.
Di is no longer deterministically related to crossing a threshold but
there is a jump in the probability of treatment at Xo .

P [Di = 1|Xi ] = {
g1(Xi ) if xi ≥ xo
g0(Xi ) if xi < xo

, where g1(Xi ) 6= g0(Xi )

g1(Xi ) and g0(Xi ) can be anything as long as they differ at x0.
The relationship between the probability of treatment and Xi can be
written as:

P [Di = 1|Xi ] = g0(Xi ) + [g1(Xi )− g0(Xi )]Ti

where Ti = 1(Xi ≥ X0)
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Use the Discontinuity as Instrument

We can write down a first stage relationship:

E [Di |Xi ] = γoo + γo1Xi + γo2X
2
i + ... +γopX

p
i

+ πTi + γ∗1XiTi + γ∗2X
2
i Ti+ ... ++ γ∗pX

p
i Ti

One can therefore use both Ti as well as the interaction terms as
instruments for Di .
If one uses only Ti as IV one has a just identified model which usually
has good finite sample properties. In that case the estimated first
stage would be:

Di = γ0 + γ1Xi + γ2X
2
i + ... +γpX

p
i + πTi + ξ1i

The fuzzy RD reduced form is:

Yi = µ+ κ1Xi + κ2X 2i + ... +κpX
p
i + ρπTi + ξ2i
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Fuzzy RD with Varying Treatment Effects - Second Stage

As in the sharp RD case one can allow the smooth function to be
different on both sides of the discontinuity.

The second stage model with interaction terms would be the same as
before:

Yi = α+ β01x̃i + β02x̃
2
i + ...+ β0p x̃

p
i

+ρDi + β∗1Di x̃i + β∗2Di x̃
2
i + ...+ β∗pDi x̃

p
i + ηi (2)

Where x̃ are now not only normalized with respect to xo but are also
fitted values obtained from the first stage regression.
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Fuzzy RD with Varying Treatment Effects - First Stages

Again one can use both Ti as well as the interaction terms as
instruments for Di .

Only using T the estimated first stages would be:

Di = γoo + γo1X̃i + γo2X̃
2
i + ... +γopX̃

p
i

+ πTi + γ∗1X̃iTi + γ∗2X̃
2
i Ti+ ... ++ γ∗pX̃

p
i Ti + ξ1i

We would also construct analogous first stages for X̃iDi , X̃ 2i Di , ...
,X̃ pi Di .

Waldinger (Warwick) 18 / 48



What Does Fuzzy RD Estimate?

As Hahn, Todd, and van der Klaauw (2001) point out, one needs the
same assumptions as in the standard IV framework.

As with other binary IVs one then estimates LATE: the average
treatment effect of the compliers.

In RD the compliers are those whose treatment status changes as we
move the value of xi from just the left of x0 to just to the right of x0.
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Practical Tips for RD Designs: Estimating the f-Function

As pointed out before there are essentially two ways of approximating
the f (X ).

1 Kernel regression.
2 Using a polynomial function (as outlined above).

There is no right or wrong method. Both have advantages and
disadvantages.
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The Kernel Method

The nonparametric kernel method has its problems in this case
because you are trying to estimate regressions at the cutoff point.
This results in a "boundary problem".

While the "true" effect is AB, with a certain bandwidth a rectangular
kernel would estimate the effect as A’B’.
There is therefore systematic bias with the kernel method if the f (X )
is upwards or downwards sloping.
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The Kernel Method - Local Linear Regression

The standard solution to this problem is to run local linear regression.

In the case drawn above this would substantially reduce the bias.

You simply estimate the following model using local linear regression:

Yi = α+ ρDi + β01x̃i + β∗1Di x̃i + ηi

where x̃i = Xi − Xo
While estimating this in a given window of width h around the cutoff
is straightforward it is more diffi cult to choose this bandwidth.

There is essentially a trade-off between bias and effi ciency.

See Lee and Lemieux (2010) for 2 methods to choose the bandwidth.
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The Polynomial Method

Alternatively you can estimate the f (X ) function including
polynomials in X (see above).

The polynomial method suffers from the problem that you are using
data that is far away from the cutoff to estimate the f (X ) function.

The equivalent of choosing the right bandwidth for the polynomial
method is to use the right order of polynomial.

An easy way suggested by Lee and Lemieux (2010) to test whether
you have the right polynomial is to estimate the polynomial function
and include a full set of bin dummies in the regression.

Then test the null hypothesis whether all bin dummies are 0.
Add polynomial terms until you can no longer reject that null
hypothesis.
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Practical Tips for Estimation

It is probably advisable to report results for both estimation types:
1 Polynomials in X.
2 Local linear regression.

In robustness checks you also want to show that including higher
order polynomials does not substantially affect your findings.

You also want to show that your results are not affected if you vary
the window around the cutoff (standard errors may go up but
hopefully the point estimate does not change).
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Graphical Analysis in RD Designs

A graphical analysis should be an integral part of any RD study. You
should show the following graphs:

1 Outcome by forcing variable (Xi ) :

The standard graph showing the discontinuity in the outcome variable.
Construct bins and average the outcome within bins on both sides of
the cutoff.
You should look at different bin sizes when constructing these graphs
(see Lee and Lemieux (2010) for details).
Plot the forcing variable Xi on the horizontal axis and the average of
Yi for each bin on the vertical axis.
You may also want to plot a relatively flexible regression line on top of
the bin means.
Inspect whether there is a discontinuity at x0.
Inspect whether there are other unexpected discontinuities.
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Example: Outcomes by Forcing Variable
From Lee and Lemieux (2010) based on Lee (2008)
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Example: Outcomes by Forcing Variable - Smaller Bins
From Lee and Lemieux (2010) based on Lee (2008)
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Graphical Analysis in RD Designs

2 Probability of treatment by forcing variable if fuzzy RD.

In a fuzzy RD design you also want to see that the treatment variable
jumps at x0.
This tells you whether you have a first stage.

3 Covariates by forcing variable.

Construct a similar graph to the one before but using a covariate as the
"outcome".
There should be no jump in other covariates.
If the covariates would jump at the discontinuity one would doubt the
identifying assumption.
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Example Covariates by Forcing Variable
From Lee and Lemieux (2010) based on Lee (2008)
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Graphical Analysis in RD Designs

4 The density of the forcing variable.

One should plot the number of observations in each bin.
This plot allows to investigate whether there is a discontinuity in the
distribution of the forcing variable at the threshold.
This would suggest that people can manipulate the forcing variable
around the threshold.
This is an indirect test of the identifying assumption that each
individual has imprecise control over the assignment variable.
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Density of the forcing variable
From Lee & Lemieux (2010) based on Lee (2008)
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Testing the Validity of the RD Design

As outlined above the key identifying assumption is that E [Y0i |Xi ]
and E [Y1i |Xi ] are continuos in Xi at X0.
This implies that each individual has imprecise control over the
assignment variable.

It is impossible to test this directly but we can nonetheless get some
evidence with the following specification tests.
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Testing the Validity of the RD Design

1 Testing the continuity of the density of X :

McCrary (2008) suggests testing the null hypothesis of continuity of
the density of the forcing variable at the discontinuity point.
In principle one does not need continuity. A discontinuity in the
density, however, suggests that there is some manipulation of X around
the threshold going on.
In the first step you partition the assignment variable into bins and
calculate frequencies (number of observations) in the bins.
In the second step you treat those frequency counts as dependent
variable in a local linear regression as before.
McCrary adopts the nonparametric framework for asymptotics.
See his website (http://www.econ.berkeley.edu/~jmccrary/DCdensity/)
for details on the test.
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Testing the Validity of the RD Design

2 Test involving covariates:

Test whether other covariates exhibit a jump at the discontinuity. (Just
re-estimate the RD model with the covariate as the dependent
variable).
This is a type of placebo test.

3 Testing for jumps at non-discontinuity points:

Imbens and Lemieux (2008) suggest to only look at one side of the
discontinuity and take the median of the forcing variable in that section
and test whether you can find a discontinuity in that part.
Another type of placebo test.
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An Application of Fuzzy RD on Class Sizes

Angrist and Lavy (1999) use a fuzzy RD design to analyze the effect
of class size on test scores.
They extend RD in two ways compared to the discussion above:

1 The causal variable of interest (class size) takes on many values. →
the first stage exploits discontinuities in average class size instead of
probabilities of a single treatment.

2 They use multiple discontinuities.

Angrist and Lavy exploit an old Talmudic rule that classes should be
split if they have more than 40 students in Israel.

A school with 40 students has only one class. → class size 40.
A school with 41 students has two classes. → class sizes 21 and 20.

Predicted class size from a strict application of Maimonides rule is:

msc = es
int [ (es−1)40 ]+1

where int[a] is the integer part of real number a.
es is enrollment
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Maimonides Rule and Actual Class Size

The rule is not followed completely strictly they therefore have a
fuzzy discontinuity design.
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Econometric Specification

They want to estimate the relationship between average achievement
and class size.

Yisc = α0 + ρnsc + ηisc

Estimating this relationship with OLS may lead to biased results
because class size is likely to be correlated with the error term. The 2
main reasons for this are:

1 Parents from higher socioeconomic backgrounds may put their children
in schools with smaller classes.

2 Because principals may put weaker students in smaller classes.
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Fuzzy RD Design

Angrist & Lavy therefore use the Maimonides rule in a fuzzy RD
design.

Yisc = α0 + α1ds + ρnsc + β1es + β2e
2
s + ηisc (1)

where Yisc is the test score of student i in school s and class c.
es is enrollment in school s.
ds is the percentage of disadvantage students in class
nsc is class size.

The variables relate to the previous description as follows:
nsc plays the role of Di .
es plays the role of Xi .
msc plays the role of Ti .

The first stage regression is:

nsc = γ0 + γ1ds + πmsc + δ1es + δ2e2s + ξ isc (2)

where msc is the function describing Maimonides rule.
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Regression Results - OLS (5th Grade)

There is a positive OLS relationship between class size and test scores. If
you control for percentage disadvantaged and total enrollment, however, the
relationship turns slightly negative but not significantly so.
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Reduced Form Relationship of Maimonides Rule on Test
Scores

Students in schools with more overall enrollment (often in bigger
cities) do better on average.
Average test scores are partly a mirror image of predicted class sizes.
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Reduced Form Relationship of Maimonides Rule on Test
Scores

Because larger schools are often in better-off areas they control for
enrolment when they redraw the relationship between class-size and
achievement.
Now test-scores are more of a mirror image to predicted class sizes.
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RD Second Stage Reading - 5th Graders

The effect of class size now is significantly negative.
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RD Second Stage Reading - Discontinuity Sample

Coeffi cients in discontinuity sample are fairly similar (for math they are even
more similar).
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Regression Kink Design

Card, Lee, Pei and Weber (2012) introduce a variant of the RD
design which they call regression kink design (RKD).

They essentially use a kink in some policy rule to identify the causal
effect of the policy.

Instead of a jump in the outcome you now expect a jump in the first
derivative.
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Unemployment Benefits in Austria

They apply their design to answer the question whether the level of
unemployment benefits affects the length of unemployment in Austria.

Unemployment benefits are based on income in a base period.

The benefit formula for unemployment exhibits 2 kinks.

There is a minimum benefit level (that is not binding for people with
very low earnings)
Then benefits are 55% of the earnings in the base period
There is a maximum benefit level that is adjusted every year

People with dependents get small supplements (that is why one can
distinguish five "solid" lines in the following graph).

Not everyone receives benefits that correspond one to one to the
formula because of mistakes in the administrative data.
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Base Year Earnings and Unemployment Benefits

The graph shows unemployment benefits (vertical axis) as a function of
pre-unemployment earnings (horizontal axis).
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Base Year Earnings and Benefits for Single Individuals

Bin-Size: 100 Euros
For single individuals UI benefits are flat below the cutoff. The
relationship is still upward sloping because of family benefits.
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Time to Next Job For Single Individuals

People with higher base earnings have less trouble finding a job
(negative slope).
There is a kink: the relationship becomes shallower once benefits
increase more.
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